%\VignetteIndexEntry{Implementation of lm.beta} %\VignetteKeywords{linear regression, standardizing, standardized coefficient, beta} % !Rnw weave = knitr % \VignetteEngine{knitr::knitr} \documentclass{article} \usepackage[latin1]{inputenc} \usepackage[english]{babel} \usepackage{amsmath} \usepackage{hyperref} \usepackage[left=2.5cm,right=2cm,top=1.5cm,bottom=1.5cm]{geometry} \pagestyle{empty} \author{Stefan Behrendt} \title{Implementation of \texttt{lm.beta}} \date{January 01, 2023} \parindent0pt \parskip 10pt plus 1pt minus 1pt \begin{document} \maketitle\thispagestyle{empty} The package \texttt{lm.beta} is based on equation (\ref{fct:impl}) to estimate the standardized regression coefficients. \begin{equation}\label{fct:impl} \hat{\beta}_i = \hat{b}_i \cdot \dfrac{s(X_i)}{s(Y)} \end{equation} using \begin{equation*} s(A) = \sqrt{\dfrac{\sum_j w_j\cdot (A_j - m(A) \cdot I)^2}{(n_w - 1) / n_w \cdot\sum_j w_j}} \end{equation*} \begin{equation*} m(A) = \dfrac{\sum_j w_j\cdot A_j}{\sum_j w_j} \end{equation*} with \begin{itemize} \item $\hat{\beta}_i$ the $i$-th standardized regression coefficient \item $\hat{b}_i$ the $i$-th unstandardized regression coefficient \item $I = \left\lbrace \begin{matrix} 0/1 & \text{for models without intercept*} \\ 1 & \text{for models with intercept} \end{matrix} \right. $ \begin{itemize} \item[*] argument \texttt{complete.standardization} chooses the factor: \texttt{complete.standardization = FALSE} $\Rightarrow I=0$ / \texttt{complete.standardization = TRUE} $\Rightarrow I=1$ \item[*] IBM\textsuperscript{\textregistered} SPSS Statistics\textsuperscript{\textregistered}, e.g., always uses $I=0$ for models without intercept \item[*] see e.g. \url{https://online.stat.psu.edu/~ajw13/stat501/SpecialTopics/Reg_thru_origin.pdf}\footnote{Eisenhauer J.G. (2003). Regression through the Origin. \textit{Teaching Statistics}, 25(3), p. 76-80.} for further information on which $I$ to choose \end{itemize} \item $Y$ the dependent variable \item $X_i$ the $i$-th independent variable \item $w$ the case weights \item $n_w$ the number of non-zero weights \end{itemize} \clearpage A simplification for $I=1$ is shown in equation (\ref{fct:i}) and for $I=0$ in equation (\ref{fct:ii}). \begin{equation}\label{fct:i} \hat{\beta}_i = \hat{b}_i \cdot \dfrac{s_{X_i}}{s_Y} \end{equation} \begin{equation}\label{fct:ii} \hat{\beta}_i = \hat{b}_i \cdot \dfrac{\sigma_{X_i}}{\sigma_Y} \end{equation} with (additionally to above) \begin{itemize} \item $s_A$ the standard deviation of $A$ (*) \item $\sigma_A = \sqrt{\sum_j A_j^2}$ an estimate of the uncentered second moment of $A$ (*) \begin{itemize} \item[*] The sample size---and the different methods for correcting it---doesn't have to be considered when estimating the moments, because the factors would be similar in numerater and denominater, and therefore would be reduced. \end{itemize} \end{itemize} Simplifications of non-weighted cases are \begin{equation*} s(A) = \sqrt{\dfrac{\sum_j (A_j - m(A) \cdot I)^2}{n - 1}} \end{equation*} \begin{equation*} m(A) = \dfrac{\sum_j A_j}{n} \end{equation*} with (additionally to above) \begin{itemize} \item $n$ the number of non-empty cases \end{itemize} \end{document}