## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE, include=TRUE------------------------------------------------- # install.packages("lilikoi") # library(lilikoi) ## ----eval=FALSE, include=TRUE------------------------------------------------- # dt <- lilikoi.Loaddata(file=system.file("extdata", "plasma_breast_cancer.csv", package = "lilikoi")) # Metadata <- dt$Metadata # dataSet <- dt$dataSet ## ----eval=FALSE, include=TRUE------------------------------------------------- # convertResults=lilikoi.MetaTOpathway('name') # Metabolite_pathway_table = convertResults$table # head(Metabolite_pathway_table) ## ----eval=FALSE, include=TRUE------------------------------------------------- # PDSmatrix=lilikoi.PDSfun(Metabolite_pathway_table) ## ----eval=FALSE, include=TRUE------------------------------------------------- # selected_Pathways_Weka= lilikoi.featuresSelection(PDSmatrix,threshold= 0.50,method="gain") # selected_Pathways_Weka ## ----eval=FALSE, include=TRUE------------------------------------------------- # # Standard Normalization # lilikoi.preproc_norm(inputdata=Metadata, method="standard") # lilikoi.preproc_norm(inputdata=Metadata, method="quantile") # lilikoi.preproc_norm(inputdata=Metadata, method="median") ## ----eval=FALSE, include=TRUE------------------------------------------------- # # KNN Imputation # lilikoi.preproc_knn(inputdata=Metadata,method=c("knn")) ## ----eval=FALSE, include=TRUE------------------------------------------------- # lilikoi.explr(data, demo.data, pca=TRUE, tsne=FALSE) ## ----eval=FALSE, include=TRUE------------------------------------------------- # lilikoi.machine_learning(MLmatrix = Metadata, measurementLabels = Metadata$Label, # significantPathways = 0, # trainportion = 0.8, cvnum = 10, dlround=50,nrun=10, Rpart=TRUE, # LDA=TRUE,SVM=TRUE,RF=TRUE,GBM=TRUE,PAM=FALSE,LOG=TRUE,DL=TRUE) ## ----eval=FALSE, include=TRUE------------------------------------------------- # # Set up prognosis function arguments # # Before running Cox-nnet, users need to provide the directory for python3 and the inst file in lilikoi # path = path.package('lilikoi', quiet = FALSE) # path = "lilikoi/inst/", use R to run # path = file.path(path, 'inst') # # python.path = "/Library/Frameworks/Python.framework/Versions/3.8/bin/python3" # # # event = jcevent # time = jctime # percent = NULL # exprdata = exprdata_tumor # alpha = 0 # nfold = 5 # method = "quantile" # cvlambda = NULL # coxnnet = TRUE # coxnnet_method = "gradient" # # library(reticulate) # # lilikoi.prognosis(event, time, exprdata, percent=percent, alpha=0, nfold=5, method="quantile", # cvlambda=cvlambda,python.path=python.path,path=path,coxnnet=TRUE,coxnnet_method="gradient") # ## ----eval=FALSE, include=TRUE------------------------------------------------- # metamat <- t(t(Metadata[, -1])) # metamat <- log2(metamat) # sampleinfo <- Metadata$Label # names(sampleinfo) <- rownames(Metadata) # grouporder <- unique(Metadata$Label) # # lilikoi.KEGGplot(metamat = metamat, sampleinfo = sampleinfo, grouporder = grouporder, # pathid = '00250', specie = 'hsa', # filesuffix = 'GSE16873', # Metabolite_pathway_table = Metabolite_pathway_table) ## ----eval=FALSE, include=TRUE------------------------------------------------- # lilikoi.meta_path(PDSmatrix = PDSmatrix, selected_Pathways_Weka = selected_Pathways_Weka, Metabolite_pathway_table = Metabolite_pathway_table)