## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(kableExtra) library(ldt) ## ----------------------------------------------------------------------------- data <- cbind(data.wdi$y, data.wdi$x[,1:5]) colnames(data)[2] <- paste0(colnames(data)[2],".lag") ## ----datatail----------------------------------------------------------------- tail(data) ## ----datasummary-------------------------------------------------------------- sapply(as.data.frame(data), summary) ## ----columndesc, echo=FALSE, results='asis'----------------------------------- for (c in colnames(data)){ if (endsWith(c, ".lag")) next() cat(paste0("- ", c, ": ", data.wdi$names[which(sapply(data.wdi$names,function(d)d$code==c))][[1]]$name), "\n\n") } ## ----search------------------------------------------------------------------- search_res <- search.sur(data = get.data(data, endogenous = 1), combinations = get.combinations(sizes = c(1,2,3), numTargets = 1, numFixPartitions = 2), metric <- get.search.metrics(typesIn = c("aic")), items = get.search.items(bestK = 4)) print(search_res) ## ----summary, warning=FALSE--------------------------------------------------- search_sum <- summary(search_res) ## ----tableprepare------------------------------------------------------------- models <- lapply(0:3, function(i) search_sum$results[which(sapply(search_sum$results, function(d) d$info==i && d$typeName=="best model"))][[1]]$value) names(models) <- paste("Best",c(1:4)) table <- coefs.table(models, latex = FALSE, regInfo = c("obs", "aic", "sic")) ## ----table, echo=FALSE-------------------------------------------------------- kb <- kable(table, "html", escape = FALSE, caption = "(Automatically Selected) Determinants of long-run GDP per capita growth") row_spec(kb, 0, bold = TRUE)