Type: Package
Title: Estimate and Simulate from Location Dependent Marked Point Processes
Version: 1.1.0
Maintainer: Lane Drew <lanetdrew@gmail.com>
Description: A suite of tools for estimating, assessing model fit, simulating from, and visualizing location dependent marked point processes characterized by regularity in the pattern. You provide a reference marked point process, a set of raster images containing location specific covariates, and select the estimation algorithm and type of mark model. 'ldmppr' estimates the process and mark models and allows you to check the appropriateness of the model using a variety of diagnostic tools. Once a satisfactory model fit is obtained, you can simulate from the model and visualize the results. Documentation for the package 'ldmppr' is available in the form of a vignette.
License: GPL (≥ 3)
Encoding: UTF-8
LazyData: true
Imports: stats, bundle, Rcpp (≥ 1.0.12), terra, doParallel, xgboost, ranger, parsnip (≥ 1.4.0), dials, recipes, rsample, tune, workflows, magrittr, hardhat, ggplot2, spatstat.geom, spatstat.explore, nloptr, GET, progress, future, furrr, foreach, yardstick
LinkingTo: Rcpp, RcppArmadillo
URL: https://github.com/lanedrew/ldmppr
BugReports: https://github.com/lanedrew/ldmppr/issues
RoxygenNote: 7.3.3
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0), dplyr
VignetteBuilder: knitr
Depends: R (≥ 3.5.0)
Config/testthat/edition: 3
NeedsCompilation: yes
Packaged: 2026-01-08 22:11:14 UTC; lanedrew
Author: Lane Drew ORCID iD [aut, cre, cph], Andee Kaplan ORCID iD [aut]
Repository: CRAN
Date/Publication: 2026-01-08 23:30:07 UTC

ldmppr: Estimate and Simulate from Location Dependent Marked Point Processes

Description

A suite of tools for estimating, assessing model fit, simulating from, and visualizing location dependent marked point processes characterized by regularity in the pattern. You provide a reference marked point process, a set of raster images containing location specific covariates, and select the estimation algorithm and type of mark model. 'ldmppr' estimates the process and mark models and allows you to check the appropriateness of the model using a variety of diagnostic tools. Once a satisfactory model fit is obtained, you can simulate from the model and visualize the results. Documentation for the package 'ldmppr' is available in the form of a vignette.

Author(s)

Maintainer: Lane Drew lanetdrew@gmail.com (ORCID) [copyright holder]

Authors:

See Also

Useful links:


Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

lhs

A value or the magrittr placeholder.

rhs

A function call using the magrittr semantics.

Value

The result of calling 'rhs(lhs)'.


calculates c_theta

Description

calculates c_theta

Usage

C_theta2_i(xgrid, ygrid, tgrid, data, params, bounds)

Arguments

xgrid

a vector of grid values for x.

ygrid

a vector of grid values for y.

tgrid

a t value.

data

a matrix of data.

params

a vector of parameters.

bounds

a vector of bounds for time, x, and y.

Value

returns the product.


Check the fit of estimated self-correcting model on the reference point pattern dataset

Description

Allows the user to perform global envelope tests for the nonparametric L, F, G, J, E, and V summary functions from the spatstat package. These tests serve as a goodness of fit measure for the estimated model relative to the reference dataset of interest.

Usage

check_model_fit(
  reference_data,
  t_min = 0,
  t_max = 1,
  sc_params = NULL,
  anchor_point = NULL,
  raster_list = NULL,
  scaled_rasters = FALSE,
  mark_model = NULL,
  xy_bounds = NULL,
  include_comp_inds = FALSE,
  thinning = TRUE,
  correction = "none",
  competition_radius = 15,
  n_sim = 2500,
  save_sims = TRUE,
  verbose = TRUE,
  seed = 0
)

Arguments

reference_data

a ppp object for the reference dataset.

t_min

minimum value for time.

t_max

maximum value for time.

sc_params

vector of parameter values corresponding to (alpha_1, beta_1, gamma_1, alpha_2, beta_2, alpha_3, beta_3, gamma_3).

anchor_point

vector of (x,y) coordinates of point to condition on.

raster_list

a list of raster objects.

scaled_rasters

'TRUE' or 'FALSE' indicating whether the rasters have been scaled.

mark_model

a model object (typically from train_mark_model).

xy_bounds

a vector of domain bounds (2 for x, 2 for y).

include_comp_inds

'TRUE' or 'FALSE' indicating whether to generate and use competition indices as covariates.

thinning

'TRUE' or 'FALSE' indicating whether to use the thinned or unthinned simulated values.

correction

type of correction to apply ("none" or "toroidal").

competition_radius

distance for competition radius if include_comp_inds is 'TRUE'.

n_sim

number of simulated datasets to generate.

save_sims

'TRUE' or 'FALSE' indicating whether to save and return the simulated datasets.

verbose

'TRUE' or 'FALSE' indicating whether to show progress of model checking.

seed

an integer value to set the seed for reproducibility.

Details

This function relies on the spatstat package for the calculation of the point pattern metrics and the GET package for the global envelope tests. The L, F, G, J, E, and V functions are a collection of non-parametric summary statistics that describe the spatial distribution of points and marks in a point pattern. See the documentation for [spatstat.explore::Lest()], [spatstat.explore::Fest()], [spatstat.explore::Gest()], [spatstat.explore::Jest()], [spatstat.explore::Emark()], and [spatstat.explore::Vmark()] for more information. Also, see the [GET::global_envelope_test()] function for more information on the global envelope tests.

Value

a list containing a combined global envelope test, individual global envelope tests for the L, F, G, J, E, and V functions, and simulated metric values (if specified).

References

Baddeley, A., Rubak, E., & Turner, R. (2015). *Spatial Point Patterns: Methodology and Applications with R*. Chapman and Hall/CRC Press, London. ISBN 9781482210200. Available at: https://www.routledge.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200.

Myllymäki, M., & Mrkvička, T. (2023). GET: Global envelopes in R. arXiv:1911.06583 [stat.ME]. doi:10.48550/arXiv.1911.06583.

Examples

# Note: The example below is provided for illustrative purposes and may take some time to run.

# Load the small example data
data(small_example_data)

# Load the example mark model that previously was trained on the small example data
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)

# Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),
                           pattern = "\\.tif$", full.names = TRUE)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

# Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

# Generate the reference pattern
reference_data <- generate_mpp(
  locations = small_example_data[, c("x", "y")],
  marks = small_example_data$size,
  xy_bounds = c(0, 25, 0, 25)
)

# Define an anchor point
M_n <- c(small_example_data[1, c("x", "y")])

# Specify the estimated parameters of the self-correcting process
# Note: These would generally be estimated using estimate_process_parameters.
# These values are estimates from the small_example_data generating script.
estimated_parameters <- c(
  0.05167978, 8.20702166, 0.02199940, 2.63236890,
  1.82729512, 0.65330061, 0.86666748, 0.04681878
)

# Check the model fit
example_model_fit <- check_model_fit(
  reference_data = reference_data,
  t_min = 0,
  t_max = 1,
  sc_params = estimated_parameters,
  anchor_point = M_n,
  raster_list = scaled_raster_list,
  scaled_rasters = TRUE,
  mark_model = mark_model,
  xy_bounds = c(0, 25, 0, 25),
  include_comp_inds = TRUE,
  thinning = TRUE,
  correction = "none",
  competition_radius = 10,
  n_sim = 100,
  save_sims = FALSE,
  verbose = TRUE,
  seed = 90210
)

plot(example_model_fit, which = 'combined')


calculates sum of values < t

Description

calculates sum of values < t

Usage

conditional_sum(obs_t, eval_t, y)

Arguments

obs_t

a vector of observed t values.

eval_t

a t value.

y

a vector of values.

Value

the conditional sum.


calculates sum of values < t

Description

calculates sum of values < t

Usage

conditional_sum_logical(obs_t, eval_t, y)

Arguments

obs_t

a vector of observed t values.

eval_t

a t value.

y

a vector of values.

Value

the conditional sum.


calculates distance in one dim

Description

calculates distance in one dim

Usage

dist_one_dim(eval_t, obs_t)

Arguments

eval_t

a t value.

obs_t

a vector of t values.

Value

distance between a single t and the vector of all t values.


Estimate point process parameters using log-likelihood maximization

Description

Estimate spatio-temporal point process parameters by maximizing the (approximate) full log-likelihood using nloptr. For the self-correcting process, the arrival times must be on (0,1) and can either be supplied directly in data as time, or constructed from size via the gentle-decay (power-law) mapping power_law_mapping using delta (single fit) or delta_values (delta search).

Usage

estimate_process_parameters(
  data,
  process = c("self_correcting"),
  x_grid = NULL,
  y_grid = NULL,
  t_grid = NULL,
  upper_bounds = NULL,
  parameter_inits = NULL,
  delta = NULL,
  delta_values = NULL,
  parallel = FALSE,
  num_cores = max(1L, parallel::detectCores() - 1L),
  set_future_plan = FALSE,
  strategy = c("local", "global_local", "multires_global_local"),
  grid_levels = NULL,
  refine_best_delta = TRUE,
  global_algorithm = "NLOPT_GN_CRS2_LM",
  local_algorithm = "NLOPT_LN_BOBYQA",
  global_options = list(maxeval = 150),
  local_options = list(maxeval = 300, xtol_rel = 1e-05, maxtime = NULL),
  n_starts = 1L,
  jitter_sd = 0.35,
  seed = 1L,
  finite_bounds = NULL,
  verbose = TRUE
)

Arguments

data

A data.frame or matrix. Must contain either columns (time, x, y) or (x, y, size). If a matrix is provided for delta search, it must have column names c("x","y","size").

process

Character string specifying the process model. Currently supports "self_correcting".

x_grid, y_grid, t_grid

Numeric vectors defining the integration grid for (x,y,t).

upper_bounds

Numeric vector of length 3 giving c(b_t, b_x, b_y).

parameter_inits

Numeric vector of length 8 giving initialization values for the model parameters.

delta

Optional numeric scalar used only when data contains (x,y,size) but not time.

delta_values

Optional numeric vector. If supplied, the function fits the model for each value of delta_values (mapping size -> time via power_law_mapping) and returns the best fit (lowest objective).

parallel

logical. If TRUE, uses furrr/future to parallelize either (a) over 'delta_values' (when provided) or (b) over multi-start initializations (when 'delta_values' is NULL and 'n_starts > 1').

num_cores

Integer number of workers to use when set_future_plan = TRUE.

set_future_plan

Logical. If TRUE, temporarily sets future::plan(multisession, workers = num_cores) and restores the original plan on exit.

strategy

Character string specifying the estimation strategy: - "local": single-level local optimization from parameter_inits. - "global_local": single-level global optimization (from parameter_inits) followed by local polish. - "multires_global_local": multi-resolution fitting over grid_levels (coarsest level uses global + local; finer levels use local polish only).

grid_levels

Optional list defining the multi-resolution grid schedule when strategy = "multires_global_local". Each entry can be a numeric vector c(nx, ny, nt) or a list with named entries list(nx=..., ny=..., nt=...). If NULL, uses the supplied (x_grid, y_grid, t_grid) as a single level.

refine_best_delta

Logical. If TRUE and delta_values is supplied, performs a final refinement fit at the best delta found using the full multi-resolution strategy.

global_algorithm, local_algorithm

Character strings specifying the NLopt algorithms to use for the global and local optimization stages, respectively.

global_options, local_options

Named lists of options to pass to nloptr::nloptr() for the global and local optimization stages, respectively.

n_starts

Integer number of multi-start initializations to use for the local optimization stage.

jitter_sd

Numeric standard deviation used to jitter the multi-start initializations.

seed

Integer random seed used for multi-start initialization jittering.

finite_bounds

Optional list with components lb and ub giving finite lower and upper bounds for all 8 parameters. Used only when the selected optimization algorithms require finite bounds.

verbose

Logical. If TRUE, prints progress messages during fitting.

Details

For the self-correcting process, the log-likelihood integral is approximated using the supplied grid (x_grid, y_grid, t_grid) over the bounded domain upper_bounds. When delta_values is supplied, this function performs a grid search over delta values, fitting the model separately for each mapped dataset and selecting the best objective value.

Value

An object of class "ldmppr_fit" containing the best nloptr fit and (optionally) all fits from a delta search.

References

Møller, J., Ghorbani, M., & Rubak, E. (2016). Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data. Biometrics, 72(3), 687–696. doi:10.1111/biom.12466.

Examples

data(small_example_data)

# Build time using a single delta (so data has time,x,y)
small_txy <- small_example_data %>%
  dplyr::mutate(time = power_law_mapping(size, 0.5)) %>%
  dplyr::select(time, x, y)

x_grid <- seq(0, 25, length.out = 5)
y_grid <- seq(0, 25, length.out = 5)
t_grid <- seq(0, 1,  length.out = 5)

parameter_inits <- c(1.5, 8.5, .015, 1.5, 3.2, .75, 3, .08)
upper_bounds <- c(1, 25, 25)

fit <- estimate_process_parameters(
  data = small_txy,
  process = "self_correcting",
  x_grid = x_grid,
  y_grid = y_grid,
  t_grid = t_grid,
  upper_bounds = upper_bounds,
  parameter_inits = parameter_inits,
  strategy = "global_local",
  global_algorithm = "NLOPT_GN_CRS2_LM",
  local_algorithm = "NLOPT_LN_BOBYQA",
  global_options = list(maxeval = 150),
  local_options = list(maxeval = 25, xtol_rel = 1e-2),
  verbose = TRUE
)

coef(fit)
logLik(fit)


# Delta-search example (data has x,y,size; time is derived internally for each delta)
fit_delta <- estimate_process_parameters(
  data = small_example_data, # x,y,size
  process = "self_correcting",
  x_grid = x_grid,
  y_grid = y_grid,
  t_grid = t_grid,
  upper_bounds = upper_bounds,
  parameter_inits = parameter_inits,
  delta_values = c(0.35, 0.5, 0.65, 0.9, 1.0),
  parallel = TRUE,
  set_future_plan = TRUE,
  num_cores = 2,
  strategy = "multires_global_local",
  global_options = list(maxeval = 100),
  local_options  = list(maxeval = 100, xtol_rel = 1e-3),
  n_starts = 3,
  refine_best_delta = TRUE,
  verbose = TRUE
)
plot(fit_delta)



Extract covariate values from a set of rasters

Description

Extract covariate values from a set of rasters

Usage

extract_covars(locations, raster_list)

Arguments

locations

a matrix/data.frame of (x,y) locations.

raster_list

a list of SpatRaster objects.

Value

a data.frame of covariates (no ID column; unique names).

Examples

# Load example raster data
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),
  pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

# Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

# Load example locations
locations <- small_example_data %>%
  dplyr::select(x, y) %>%
  as.matrix()

# Extract covariates
example_covars <- extract_covars(locations, scaled_raster_list)
head(example_covars)


calculates full product for one grid point

Description

calculates full product for one grid point

Usage

full_product(xgrid, ygrid, tgrid, data, params)

Arguments

xgrid

a vector of grid values for x.

ygrid

a vector of grid values for y.

tgrid

a t value.

data

a matrix of data.

params

a vector of parameters.

Value

returns the product.


calculates full self-correcting log-likelihood

Description

calculates full self-correcting log-likelihood

Usage

full_sc_lhood(xgrid, ygrid, tgrid, tobs, data, params, bounds)

Arguments

xgrid

a vector of grid values for x.

ygrid

a vector of grid values for y.

tgrid

a vector of grid values for t.

tobs

a vector of observed values for t.

data

a matrix of times and locations.

params

a vector of parameters.

bounds

a vector of bounds for time, x, and y.

Value

evaluation of full log-likelihood.


calculates fast full self-correcting log-likelihood

Description

calculates fast full self-correcting log-likelihood

Usage

full_sc_lhood_fast(xgrid, ygrid, tgrid, tobs, data, params, bounds)

Arguments

xgrid

a vector of grid values for x.

ygrid

a vector of grid values for y.

tgrid

a vector of grid values for t.

tobs

a vector of observed values for t.

data

a matrix of times and locations.

params

a vector of parameters.

bounds

a vector of bounds for time, x, and y.

Value

evaluation of full log-likelihood.


Generate a marked process given locations and marks

Description

Creates an object of class "ppp" that represents a marked point pattern in the two-dimensional plane.

Usage

generate_mpp(locations, marks = NULL, xy_bounds = NULL)

Arguments

locations

a data frame of (x,y) locations with names "x" and "y".

marks

a vector of marks.

xy_bounds

a vector of domain bounds (2 for x, 2 for y).

Value

a ppp object with marks.

Examples

# Load example data
data(small_example_data)

# Generate a marked point process
generate_mpp(
  locations = small_example_data %>% dplyr::select(x, y),
  marks = small_example_data$size,
  xy_bounds = c(0, 25, 0, 25)
)


calculates spatio-temporal interaction

Description

calculates spatio-temporal interaction

Usage

interaction_st(data, params)

Arguments

data

a matrix of times and locations.

params

a vector of parameters.

Value

a vector of interaction probabilities for every point.


Internal helpers (not part of the public API)

Description

These functions are used internally by ldmppr and are not intended to be called directly by users.

Usage

new_ldmppr_model_check(
  combined_env,
  envs,
  curve_sets,
  sim_metrics = NULL,
  settings = list(),
  call = NULL
)

new_ldmppr_sim(
  process,
  mpp,
  realization,
  params,
  bounds,
  anchor_point,
  thinning,
  correction,
  include_comp_inds,
  competition_radius,
  call = NULL,
  meta = list()
)

new_ldmppr_mark_model(
  engine,
  fit_engine = NULL,
  xgb_raw = NULL,
  recipe = NULL,
  outcome = "size",
  feature_names = NULL,
  info = list()
)

new_ldmppr_fit(
  process,
  fit,
  fits = NULL,
  mapping = NULL,
  grid = NULL,
  data_summary = NULL,
  engine = "nloptr",
  call = NULL,
  timing = NULL
)

preprocess_new_data(object, new_data)

rehydrate_xgb(object)

as_mark_model(mark_model)

.build_sc_matrix(data, delta = NULL)

.default_sc_param_bounds(txy, upper_bounds)

a %||% b

Fitted point-process model object

Description

Objects of class 'ldmppr_fit' are returned by [estimate_process_parameters()]. They contain the best-fitting optimization result (and optionally multiple fits, e.g. from a delta search) along with metadata used to reproduce the fit.

Usage

## S3 method for class 'ldmppr_fit'
print(x, ...)

## S3 method for class 'ldmppr_fit'
coef(object, ...)

## S3 method for class 'ldmppr_fit'
logLik(object, ...)

## S3 method for class 'ldmppr_fit'
summary(object, ...)

## S3 method for class 'summary.ldmppr_fit'
print(x, ...)

## S3 method for class 'ldmppr_fit'
plot(x, ...)

as_nloptr(x, ...)

## S3 method for class 'ldmppr_fit'
as_nloptr(x, ...)

Arguments

x

an object of class 'ldmppr_fit'.

...

additional arguments (not used).

object

an object of class 'ldmppr_fit'.

Details

A 'ldmppr_fit' is a list with (at minimum):

Value

* 'print()' prints a brief summary of the fit. * 'coef()' returns the estimated parameter vector. * 'logLik()' returns the log-likelihood at the optimum. * 'summary()' returns a 'summary.ldmppr_fit'. * 'plot()' plots diagnostics for multi-fit runs (e.g. objective vs delta), if available.

Methods (by generic)

Functions


Mark model object

Description

'ldmppr_mark_model' objects store a fitted mark model and preprocessing information used to predict marks at new locations and times.

Usage

ldmppr_mark_model(
  engine,
  fit_engine = NULL,
  xgb_raw = NULL,
  recipe = NULL,
  outcome = "size",
  feature_names = NULL,
  info = list()
)

## S3 method for class 'ldmppr_mark_model'
print(x, ...)

## S3 method for class 'ldmppr_mark_model'
predict(object, new_data, ...)

save_mark_model(object, path, ...)

## S3 method for class 'ldmppr_mark_model'
save_mark_model(object, path, ...)

load_mark_model(path)

Arguments

engine

Character scalar. One of '"xgboost"' or '"ranger"'.

fit_engine

Fitted engine object (e.g. 'xgb.Booster' or a ranger fit).

xgb_raw

Raw xgboost payload (e.g. UBJ) used for rehydration.

recipe

A prepped recipes object used for preprocessing new data.

outcome

Outcome column name (default '"size"').

feature_names

Optional vector of predictor names required at prediction time.

info

Optional list of metadata.

x

a 'ldmppr_mark_model' object.

...

passed to methods.

object

a 'ldmppr_mark_model' object.

new_data

a data frame of predictors (and possibly outcome columns).

path

path to an '.rds' created by [save_mark_model()] (or legacy objects).

Details

These objects are typically returned by [train_mark_model()] and can be saved/loaded with [save_mark_model()] and [load_mark_model()].

The model may be backed by different engines (currently '"xgboost"' and '"ranger"'). For xgboost, the object can store a serialized booster payload to make saving/loading robust across R sessions.

Value

* 'print()' prints a brief summary. * 'predict()' returns numeric predictions for new data.

an object of class '"ldmppr_mark_model"'.

Methods (by generic)

Functions


Model fit diagnostic object

Description

Objects of class 'ldmppr_model_check' are returned by [check_model_fit()]. They contain global envelope test results and curve sets for multiple summary functions/statistics.

Usage

## S3 method for class 'ldmppr_model_check'
print(x, ...)

## S3 method for class 'ldmppr_model_check'
summary(object, ...)

## S3 method for class 'summary.ldmppr_model_check'
print(x, ...)

## S3 method for class 'ldmppr_model_check'
plot(x, which = c("combined", "L", "F", "G", "J", "E", "V"), ...)

Arguments

x

an object of class 'ldmppr_model_check'.

...

additional arguments passed to the underlying 'plot()' method (e.g., from **GET**).

object

an object of class 'ldmppr_model_check'.

which

which envelope to plot. '"combined"' plots the global envelope; otherwise one of '"L"', '"F"', '"G"', '"J"', '"E"', '"V"'.

Details

An 'ldmppr_model_check' is a list with components such as:

Value

* 'print()' prints a brief summary of the diagnostic object. * 'summary()' returns a 'summary.ldmppr_model_check' object. * 'plot()' plots the combined envelope or a selected statistic envelope.

Methods (by generic)

Functions


Simulated marked point process object

Description

'ldmppr_sim' objects are returned by [simulate_mpp()]. They contain the simulated realization, an associated marked point pattern object, and metadata used to reproduce or inspect the simulation.

Usage

## S3 method for class 'ldmppr_sim'
print(x, ...)

## S3 method for class 'ldmppr_sim'
as.data.frame(x, ...)

## S3 method for class 'ldmppr_sim'
nobs(object, ...)

## S3 method for class 'ldmppr_sim'
plot(x, pattern_type = "simulated", ...)

mpp.ldmppr_sim(x, ...)

Arguments

x

a 'ldmppr_sim' object.

...

additional arguments (not used).

object

a 'ldmppr_sim' object.

pattern_type

type of pattern to plot '"simulated"' (default).

Details

An 'ldmppr_sim' is a list with at least:

Value

For methods:

'print()'

prints a summary of the simulation.

'plot()'

returns a ggplot visualization of the marked point pattern.

'as.data.frame()'

returns the simulated realization as a data.frame.

'nobs()'

returns the number of points in the realization.

'mpp()'

returns the marked point pattern object.

Methods (by generic)

Functions


Medium Example Data

Description

A medium sized example dataset consisting of 111 observations in a (50m x 50m) square domain.

Usage

data("medium_example_data")

Format

## 'medium_example_data' A data frame with 111 rows and 3 columns:

x

x coordinate

y

y coordinate

size

Size

...

Details

The dataset was generated using the Snodgrass dataset available at https://data.ess-dive.lbl.gov/view/doi:10.15485/2476543.

The full code to generate this dataset is available in the package's 'data_raw' directory.

Source

Real example dataset. Code to generate it can be found in 'data_raw/medium_example_data.R'.


calculates part 1-1 full

Description

calculates part 1-1 full

Usage

part_1_1_full(data, params)

Arguments

data

a matrix of locations and times.

params

a vector of parameters.

Value

full likelihood evaluation for part 1.


calculates part 1-2 full

Description

calculates part 1-2 full

Usage

part_1_2_full(data, params)

Arguments

data

a matrix of locations and times.

params

a vector of parameters.

Value

full likelihood evaluation for part 2.


calculates part 1-3

Description

calculates part 1-3

Usage

part_1_3_full(xgrid, ygrid, tgrid, data, params, bounds)

Arguments

xgrid

a vector of grid values for x.

ygrid

a vector of grid values for y.

tgrid

a t value.

data

a matrix of times and locations.

params

a vector of parameters.

bounds

a vector of time, x, and y bounds.

Value

full likelihood evaluation for part 3.


calculates part 1-4

Description

calculates part 1-4

Usage

part_1_4_full(data, params)

Arguments

data

a matrix of times and locations.

params

a vector of parameters.

Value

full likelihood evaluation for part 4.


calculates part 1 of the likelihood

Description

calculates part 1 of the likelihood

Usage

part_1_full(xgrid, ygrid, tgrid, data, params, bounds)

Arguments

xgrid

a vector of grid values for x.

ygrid

a vector of grid values for y.

tgrid

a t value.

data

a matrix of times and locations.

params

a vector of parameters.

bounds

a vector of bounds for time, x, and y.

Value

full evaluation of first part of likelihood.


calculates part 2 of the likelihood

Description

calculates part 2 of the likelihood

Usage

part_2_full(xgrid, ygrid, tgrid, data, params, bounds)

Arguments

xgrid

a vector of grid values for x.

ygrid

a vector of grid values for y.

tgrid

a vector of grid values for t.

data

a matrix of times and locations.

params

a vector of parameters.

bounds

a vector of bounds for time, x, and y.

Value

full evaluation of second part of likelihood.


Plot a marked point process

Description

Plot a marked point process

Usage

plot_mpp(mpp_data, pattern_type = c("reference", "simulated"))

Arguments

mpp_data

ppp object with marks or data frame with columns (x, y, size).

pattern_type

type of pattern to plot ("reference" or "simulated").

Value

a ggplot object of the marked point process.

Examples

# Load example data
data(small_example_data)
mpp_data <- generate_mpp(
  locations = small_example_data %>% dplyr::select(x, y),
  marks = small_example_data$size,
  xy_bounds = c(0, 25, 0, 25)
)

# Plot the marked point process
plot_mpp(mpp_data, pattern_type = "reference")


Gentle decay (power-law) mapping function from sizes to arrival times

Description

Gentle decay (power-law) mapping function from sizes to arrival times

Usage

power_law_mapping(sizes, delta)

Arguments

sizes

vector of sizes to be mapped to arrival times.

delta

numeric value (greater than 0) for the exponent in the mapping function.

Value

vector of arrival times.

Examples

# Generate a vector of sizes
sizes <- runif(100, 0, 100)

# Map the sizes to arrival times using a power-law mapping with delta = .5
power_law_mapping(sizes, .5)


Predict values from the mark distribution

Description

Predict values from the mark distribution

Usage

predict_marks(
  sim_realization,
  raster_list = NULL,
  scaled_rasters = FALSE,
  mark_model = NULL,
  xy_bounds = NULL,
  include_comp_inds = FALSE,
  competition_radius = 15,
  correction = "none"
)

Arguments

sim_realization

a data frame containing a thinned or unthinned realization from simulate_sc.

raster_list

a list of raster objects.

scaled_rasters

'TRUE' or 'FALSE' indicating whether the rasters have been scaled.

mark_model

a model object (typically from train_mark_model).

xy_bounds

a vector of domain bounds (2 for x, 2 for y).

include_comp_inds

'TRUE' or 'FALSE' indicating whether to generate and use competition indices as covariates.

competition_radius

distance for competition radius if include_comp_inds is 'TRUE'.

correction

type of correction to apply ("none" or "toroidal").

Value

a vector of predicted mark values.

Examples

# Simulate a realization
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)
M_n <- c(10, 14)
generated_locs <- simulate_sc(
  t_min = 0,
  t_max = 1,
  sc_params = generating_parameters,
  anchor_point = M_n,
  xy_bounds = c(0, 25, 0, 25)
)

# Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),
  pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

# Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

# Load the example mark model
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)

# Predict the mark values
predict_marks(
  sim_realization = generated_locs$thinned,
  raster_list = scaled_raster_list,
  scaled_rasters = TRUE,
  mark_model = mark_model,
  xy_bounds = c(0, 25, 0, 25),
  include_comp_inds = TRUE,
  competition_radius = 10,
  correction = "none"
)


Scale a set of rasters

Description

Scale a set of rasters

Usage

scale_rasters(raster_list, reference_resolution = NULL)

Arguments

raster_list

a list of raster objects.

reference_resolution

the resolution to resample the rasters to.

Value

a list of scaled raster objects.

Examples

# Create two example rasters
rast_a <- terra::rast(
  ncol = 10, nrow = 10,
  xmin = 0, xmax = 10,
  ymin = 0, ymax = 10,
  vals = runif(100)
)

rast_b <- terra::rast(
  ncol = 10, nrow = 10,
  xmin = 0, xmax = 10,
  ymin = 0, ymax = 10,
  vals = runif(100)
)

# Scale example rasters in a list
rast_list <- list(rast_a, rast_b)
scale_rasters(rast_list)


Simulate the spatial component of the self-correcting model

Description

Simulate the spatial component of the self-correcting model

Usage

sim_spatial_sc(M_n, params, nsim_t, xy_bounds)

Arguments

M_n

a vector of (x,y)-coordinates for largest point.

params

a vector of parameters (alpha_2, beta_2).

nsim_t

number of points to simulate.

xy_bounds

vector of lower and upper bounds for the domain (2 for x, 2 for y).

Value

a matrix of point locations in the (x,y)-plane.


Simulate the temporal component of the self-correcting model

Description

Simulate the temporal component of the self-correcting model

Usage

sim_temporal_sc(Tmin = 0, Tmax = 1, params = as.numeric(c(0, 0, 0)))

Arguments

Tmin

minimum time value.

Tmax

maximum time value.

params

a vector of parameters (alpha_1, beta_1, gamma_1).

Value

a vector of thinned and unthinned temporal samples.


Simulate a realization of a location dependent marked point process

Description

Simulate a realization of a location dependent marked point process

Usage

simulate_mpp(
  sc_params = NULL,
  t_min = 0,
  t_max = 1,
  anchor_point = NULL,
  raster_list = NULL,
  scaled_rasters = FALSE,
  mark_model = NULL,
  xy_bounds = NULL,
  include_comp_inds = FALSE,
  competition_radius = 15,
  correction = "none",
  thinning = TRUE
)

Arguments

sc_params

vector of parameter values corresponding to (alpha_1, beta_1, gamma_1, alpha_2, beta_2, alpha_3, beta_3, gamma_3).

t_min

minimum value for time.

t_max

maximum value for time.

anchor_point

vector (or 1x2 matrix) of (x,y) coordinates to condition on.

raster_list

list of raster objects.

scaled_rasters

'TRUE' or 'FALSE' indicating whether the rasters have been scaled.

mark_model

a mark model (e.g., from train_mark_model()), or a path to a saved mark model.

xy_bounds

a vector of domain bounds (a_x, b_x, a_y, b_y).

include_comp_inds

'TRUE' or 'FALSE' indicating whether to generate competition indices as covariates.

competition_radius

distance for competition radius if include_comp_inds is 'TRUE'.

correction

type of correction to apply ("none" or "toroidal").

thinning

'TRUE' or 'FALSE' indicating whether to thin the realization.

Value

An object of class "ldmppr_sim".

Examples

# Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)

# Specify an anchor point
M_n <- matrix(c(10, 14), ncol = 1)

# Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),
  pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

# Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

# Load the example mark model
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- load_mark_model(file_path)

# Simulate a realization
example_mpp <- simulate_mpp(
  sc_params = generating_parameters,
  t_min = 0,
  t_max = 1,
  anchor_point = M_n,
  raster_list = scaled_raster_list,
  scaled_rasters = TRUE,
  mark_model = mark_model,
  xy_bounds = c(0, 25, 0, 25),
  include_comp_inds = TRUE,
  competition_radius = 10,
  correction = "none",
  thinning = TRUE
)

# Plot the realization and provide a summary
plot(example_mpp, pattern_type = "simulated")
summary(example_mpp)

Simulate from the self-correcting model

Description

Allows the user to simulate a realization from the self-correcting model given a set of parameters and a point to condition on.

Usage

simulate_sc(
  t_min = 0,
  t_max = 1,
  sc_params = NULL,
  anchor_point = NULL,
  xy_bounds = NULL
)

Arguments

t_min

minimum value for time.

t_max

maximum value for time.

sc_params

Vector of parameter values corresponding to (\alpha_1,\beta_1,\gamma_1,\alpha_2,\beta_2,\alpha_3,\beta_3,\gamma_3) (i.e., alpha_1, beta_1, gamma_1, alpha_2, beta_2, alpha_3, beta_3, gamma_3).

anchor_point

vector of (x,y) coordinates of point to condition on.

xy_bounds

a vector of domain bounds (2 for x, 2 for y).

Value

a list containing the thinned and unthinned simulation realizations.

Examples

# Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)

# Specify an anchor point
M_n <- c(10, 14)

# Simulate the self-correcting process
generated_locs <- simulate_sc(
  t_min = 0,
  t_max = 1,
  sc_params = generating_parameters,
  anchor_point = M_n,
  xy_bounds = c(0, 25, 0, 25)
)


Small Example Data

Description

A small example dataset for testing and examples consisting of 121 observations in a (25m x 25m) square domain.

Usage

data("small_example_data")

Format

## 'small_example_data' A data frame with 121 rows and 3 columns:

x

x coordinate

y

y coordinate

size

Size

...

Details

The dataset was generated using the example raster data and an exponential decay size function.

The full code to generate this dataset is available in the package's 'data_raw' directory.

Source

Simulated dataset. Code to generate it can be found in 'data_raw/small_example_data.R'.


calculates spatial interaction

Description

calculates spatial interaction

Usage

spat_interaction(Hist, newp, params)

Arguments

Hist

a matrix of points.

newp

a new point vector.

params

a vector of parameters.

Value

calculated probability of new point.


calculates temporal likelihood

Description

calculates temporal likelihood

Usage

temporal_sc(params, eval_t, obs_t)

Arguments

params

a vector of parameters (alpha_1, beta_1, gamma_1).

eval_t

a t value.

obs_t

a vector of t values.

Value

evaluation of full temporal likelihood.


Optimized function to compute toroidal distance matrix over a rectangular domain

Description

Optimized function to compute toroidal distance matrix over a rectangular domain

Usage

toroidal_dist_matrix_optimized(location_matrix, x_bound, y_bound)

Arguments

location_matrix

a 2 column matrix of (x,y) coordinates.

x_bound

the upper bound for the x dimension.

y_bound

the upper bound for the y dimension.

Value

a matrix of toroidal distances.

Examples

# Generate a matrix of locations
location_matrix <- matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
x_bound <- 10
y_bound <- 10

# Compute the toroidal distance matrix
toroidal_dist_matrix_optimized(location_matrix, x_bound, y_bound)


Train a flexible model for the mark distribution

Description

Trains a predictive model for the mark distribution of a spatio-temporal process. Allows the user to incorporate location specific information and competition indices as covariates in the mark model.

Usage

train_mark_model(
  data,
  raster_list = NULL,
  scaled_rasters = FALSE,
  model_type = "xgboost",
  xy_bounds = NULL,
  save_model = FALSE,
  save_path = NULL,
  parallel = TRUE,
  n_cores = NULL,
  include_comp_inds = FALSE,
  competition_radius = 15,
  correction = "none",
  selection_metric = "rmse",
  cv_folds = 5,
  tuning_grid_size = 200,
  verbose = TRUE
)

Arguments

data

a data frame containing named vectors x, y, size, and time.

raster_list

a list of raster objects.

scaled_rasters

'TRUE' or 'FALSE' indicating whether the rasters have been scaled.

model_type

the machine learning model type ("xgboost" or "random_forest").

xy_bounds

a vector of domain bounds (2 for x, 2 for y).

save_model

'TRUE' or 'FALSE' indicating whether to save the generated model.

save_path

path for saving the generated model.

parallel

'TRUE' or 'FALSE' indicating whether to use parallelization in model training.

n_cores

number of cores to use in parallel model training (if 'parallel' is 'TRUE').

include_comp_inds

'TRUE' or 'FALSE' indicating whether to generate and use competition indices as covariates.

competition_radius

distance for competition radius if include_comp_inds is 'TRUE'.

correction

type of correction to apply ("none", "toroidal", or "truncation").

selection_metric

metric to use for identifying the optimal model ("rmse" or "mae").

cv_folds

number of cross-validation folds to use in model training.

tuning_grid_size

size of the tuning grid for hyperparameter tuning.

verbose

'TRUE' or 'FALSE' indicating whether to show progress of model training.

Value

an ldmppr_mark_model object.

Examples

# Load example raster data
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),
  pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)

# Scale the rasters
scaled_raster_list <- scale_rasters(rasters)

# Load example locations
locations <- small_example_data %>%
  dplyr::mutate(time = power_law_mapping(size, .5))

# Train the model
mark_model <- train_mark_model(
  data = locations,
  raster_list = scaled_raster_list,
  scaled_rasters = TRUE,
  model_type = "xgboost",
  xy_bounds = c(0, 25, 0, 25),
  parallel = FALSE,
  include_comp_inds = FALSE,
  competition_radius = 10,
  correction = "none",
  selection_metric = "rmse",
  cv_folds = 3,
  tuning_grid_size = 2,
  verbose = TRUE
)

print(mark_model)


calculates euclidean distance

Description

calculates euclidean distance

Usage

vec_dist(x, y)

Arguments

x

a vector of x values.

y

a vector of y values.

Value

the distance between the two vectors.


calculates euclidean distance between a vector and a matrix

Description

calculates euclidean distance between a vector and a matrix

Usage

vec_to_mat_dist(eval_u, x_col, y_col)

Arguments

eval_u

a vector of x and y coordinates.

x_col

a vector of x coordinates.

y_col

a vector of y coordinates.

Value

a vector of distances between a vector and each row of a matrix.