Title: | Two-Sample Kuiper Test |
Version: | 1.0 |
Author: | Ying Ruan [aut, cre] |
Maintainer: | Ying Ruan <y.ruan.16@ucl.ac.uk> |
Description: | This function performs the two-sample Kuiper test to assess the anomaly of continuous, one-dimensional probability distributions. References used for this method are (1). Kuiper, N. H. (1960). <doi:10.1016/S1385-7258(60)50006-0> and (2). Paltani, S. (2004). <doi:10.1051/0004-6361:20034220>. |
Depends: | R (≥ 3.3.1) |
License: | AGPL-3 |
LazyData: | true |
NeedsCompilation: | no |
Packaged: | 2018-12-09 17:36:35 UTC; Ying Taylor Ruan |
Repository: | CRAN |
Date/Publication: | 2018-12-18 11:20:09 UTC |
2-sample Kuiper Test Function: performs Kuiper Test for two sets samples of observations
Description
2-sample Kuiper Test Function: performs Kuiper Test for two sets samples of observations
Usage
kuiper.2samp(x, y)
Arguments
x |
an array of sample observations |
y |
the other array of sample observations |
Value
Kuiper test statistic and p-value
Note
The computation of the p-value takes references from Paltani(2004) which states that the functions (in the set of four formulas) never underestimates the false positive probability however it can be a bit high when the sample size in the range of 40 to 50 a factor of 1.5 is quoted at the 1e-7 level
References
Kuiper, N. H. (1960). "Tests concerning random points on a circle". Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A. 63: 38-47. Paltani, S., "Searching for periods in X-ray observations using Kuiper's test. Application to the ROSAT PSPC archive", Astronomy and Astrophysics, v.240, p.789-790, 2004.
Examples
kuiper.2samp(rnorm(1e3),rnorm(1e3))