## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(kindisperse) ## ----appdata------------------------------------------------------------------ fullsibs <- simulate_kindist_composite(nsims = 100, ovisigma = 25, kinship = "FS") reset_appdata() mount_appdata(fullsibs, "fullsibs") display_appdata() fullsibs2 <- retrieve_appdata("fullsibs") reset_appdata() ## ----graphical_simulation, fig.width = 10, fig.height = 10-------------------- ## run graphical simulation graphdata <- simgraph_data(nsims = 1000, posigma = 25, dims = 250) simgraph_graph(graphdata, nsim = 5, kinship = "1C") ## ----simgraphpin, fig.width = 10, fig.height = 10----------------------------- graphdata <- simgraph_data(nsims = 1000, posigma = 25, dims = 250) simgraph_graph(graphdata, nsims = 1000, pinwheel = T, kinship = "1C") ## ----simgraphhist, fig.width = 10, fig.height = 10---------------------------- graphdata <- simgraph_data(nsims = 1000, posigma = 25, dims = 250) simgraph_graph(graphdata, nsims = 1000, histogram = T, kinship = "1C") ## ----simplesim---------------------------------------------------------------- simulate_kindist_simple(nsims = 5, sigma = 100, method = "Gaussian", kinship = "PO", lifestage = "immature") ## ----compsim------------------------------------------------------------------ simulate_kindist_composite(nsims = 5, initsigma = 50, breedsigma = 30, gravsigma = 50, ovisigma = 10, method = "Laplace", kinship = "H1C", lifestage = "ovipositional") ## ----dmodel------------------------------------------------------------------- dmodel <- dispersal_model(juvenile = 50, breeding = 40, gestation = 30, .FS = "juvenile", .HS = "breeding", .sampling_stage = "gestation") dmodel ## ----customsim---------------------------------------------------------------- simulate_kindist_custom(nsims = 5, model = dmodel, kinship = "PO") ## ----sampledims--------------------------------------------------------------- compsim <- simulate_kindist_composite(nsims = 100000, kinship = "H2C") sample_kindist(compsim, upper = 1000, lower = 200, spacing = 50, n = 25) ## ----files-------------------------------------------------------------------- kinobject <- simulate_kindist_simple(nsims = 25, kinship = "FS", lifestage = "immature") #kinpair_to_csv(kinobject, "FS_kin.csv") # saves file #csv_to_kinpair("FS_kin.csv") # reloads it ## ----to kinpairdata----------------------------------------------------------- kinvect <- c(25, 23, 43, 26, 14, 38) vector_to_kinpair(kinvect, kinship = "H1C", lifestage = "immature") ## ----axials------------------------------------------------------------------- paroff <- simulate_kindist_simple(nsims = 1000, sigma = 75, kinship = "PO") axials(paroff) ## ----axials2------------------------------------------------------------------ fullsibs <- simulate_kindist_composite(nsims = 10000, ovisigma = 25, kinship = "FS") axials(fullsibs, composite = 2) ## ----axials subtract---------------------------------------------------------- axials_subtract(24, 19) ## ----axial setup-------------------------------------------------------------- # set up initial sigma values init = 50 brd = 25 grv = 75 ovs = 10 # calculate theoretical PO value po_sigma <- sqrt(init^2 + brd^2 + grv^2 + ovs^2) po_sigma ## ----axial standard----------------------------------------------------------- # set up sims fullsibs <- simulate_kindist_composite(nsims = 75, initsigma = init, breedsigma = brd, gravsigma = grv, ovisigma = ovs, kinship = "FS") fullcous <- simulate_kindist_composite(nsims = 75, initsigma = init, breedsigma = brd, gravsigma = grv, ovisigma = ovs, kinship = "1C") # calculate PO axial sigma C.I. axpermute_standard(fullcous, fullsibs) ## ----------------------------------------------------------------------------- # Set up new distributions halfsibs <- simulate_kindist_composite(nsims = 75, initsigma = init, breedsigma = brd, gravsigma = grv, ovisigma = ovs, kinship = "HS") halfcous <- simulate_kindist_composite(nsims = 75, initsigma = init, breedsigma = brd, gravsigma = grv, ovisigma = ovs, kinship = "H1C") # combine cousin distributions and recompose as object. Chaning kinship # to standard value for unknown as I will be combining the distributions. fc <- dplyr::mutate(kinpair_to_tibble(fullcous), kinship = "UN") hc <- dplyr::mutate(kinpair_to_tibble(halfcous), kinship = "UN") cc <- tibble::add_row(fc, hc) cousins <- df_to_kinpair(cc) cousins ## ----fancy estimate----------------------------------------------------------- # amix allows supply of additional (mixed) kin category H1C to acat 1C; # bcomp allows supply of distribution to composite with bvect (this is done to match # the cousin mixture in phase) axpermute_standard(avect = cousins, acat = "1C", amix = TRUE, amixcat = "H1C", bvect = fullsibs, bcomp = TRUE, bcompvect = halfsibs) ## ----dispersal model---------------------------------------------------------- antechinus_model <- dispersal_model(juvenile = 100, breeding = 50, gestation = 25, pouch = 25, .FS = "juvenile", .HS = "breeding", .sampling_stage = "juvenile") antechinus_model ## ----initial_sim-------------------------------------------------------------- library(magrittr) ant_po <- simulate_kindist_custom(nsims = 10000, model = antechinus_model, kinship = "PO") ant_po ## ----ant basic po estimate---------------------------------------------------- ant_fs <- simulate_kindist_custom(nsims = 10000, model = antechinus_model, kinship = "FS") ant_1c <- simulate_kindist_custom(nsims = 10000, model = antechinus_model, kinship = "1C") axials_standard(ant_1c, ant_fs) # larger dispersal category goes first. ## ----switch sampling---------------------------------------------------------- antechinus_model <- dispersal_model(juvenile = 100, breeding = 50, gestation = 25, pouch = 25, .FS = "juvenile", .HS = "breeding", .sampling_stage = "pouch", .breeding_stage = "breeding", .visible_stage = "juvenile") antechinus_model ## ----antechinus 1c------------------------------------------------------------ ant_1c_juv <- simulate_kindist_custom(nsims = 100000, model = antechinus_model, kinship = "1C", cycle = -1, method = "vgamma") ant_1c_juv ## ----antechinus fs------------------------------------------------------------ ant_fs_juv <- simulate_kindist_custom(nsims = 100000, model = antechinus_model, kinship = "FS", cycle = -1, method = "vgamma") ant_fs_juv ## ----ant po est--------------------------------------------------------------- axpermute_standard(ant_1c_juv, ant_fs_juv, nsamp = 100, override = TRUE) ## ----ant sample1-------------------------------------------------------------- ant_1c_juv %>% sample_kindist(dims = 100, n = 1000) %>% axpermute_standard(ant_fs_juv, nsamp = 100, override = TRUE) ## ----ant sample2-------------------------------------------------------------- ant_1c_juv %>% sample_kindist(dims = 1000, n = 1000) %>% axpermute_standard(ant_fs_juv, nsamp = 100, override = TRUE) ## ----ant sample3-------------------------------------------------------------- ant_1c_juv %>% sample_kindist(dims = 2000, n = 1000) %>% axpermute_standard(ant_fs_juv, nsamp = 100, override = TRUE)