## ---- echo=FALSE, warning=FALSE----------------------------------------------- library(knitr) opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", fig.retina = 2, out.width = "100%", dpi = 96 , pngquant = "--speed=1" ) knit_hooks$set(pngquant = hook_pngquant) # brew install pngquant ## ---- message = FALSE--------------------------------------------------------- library(intradayModel) data(volume_aapl) volume_aapl[1:5, 1:5] # print the head of data volume_aapl_training <- volume_aapl[, 1:104] volume_aapl_testing <- volume_aapl[, 105:124] ## ----------------------------------------------------------------------------- model_fit <- fit_volume(volume_aapl_training) ## ---- out.width="100%"-------------------------------------------------------- analysis_result <- decompose_volume(purpose = "analysis", model_fit, volume_aapl_training) # visualization plots <- generate_plots(analysis_result) plots$log_components ## ---- out.width="100%"-------------------------------------------------------- forecast_result <- forecast_volume(model_fit, volume_aapl_testing) # visualization plots <- generate_plots(forecast_result) plots$original_and_forecast ## ---- warning=FALSE----------------------------------------------------------- data(volume_fdx) head(volume_fdx) tail(volume_fdx) ## ----------------------------------------------------------------------------- # set fixed value fixed_pars <- list() fixed_pars$"x0" <- c(13.33, -0.37) # set initial value init_pars <- list() init_pars$"a_eta" <- 1 volume_fdx_training <- volume_fdx['2019-07-01/2019-11-30'] model_fit <- fit_volume(volume_fdx_training, verbose = 2, control = list(acceleration = TRUE)) ## ----------------------------------------------------------------------------- analysis_result <- decompose_volume(purpose = "analysis", model_fit, volume_fdx_training) str(analysis_result) ## ----------------------------------------------------------------------------- plots <- generate_plots(analysis_result) plots$log_components plots$original_and_smooth ## ----------------------------------------------------------------------------- # use training data for burn-in forecast_result <- forecast_volume(model_fit, volume_fdx, burn_in_days = 105) str(forecast_result) ## ----------------------------------------------------------------------------- plots <- generate_plots(forecast_result) plots$log_components plots$original_and_forecast