## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ## ----install, eval = FALSE---------------------------------------------------- # install.packages("impactr") ## ----library------------------------------------------------------------------ library(impactr) ## ----read_acc, eval = FALSE--------------------------------------------------- # read_acc("path/to/file") ## ----impacr_example----------------------------------------------------------- impactr_example() ## ----read_example_data-------------------------------------------------------- acc_data <- read_acc(impactr_example("hip-raw.csv")) ## ----acc_data----------------------------------------------------------------- acc_data ## ----path_example, eval = FALSE----------------------------------------------- # # For macOS or Linux # read_acc("~/Desktop/accelerometer_data/id_001_raw_acceleration.csv") # # For Windows # read_acc("C:/Users/username/Desktop/accelerometer_data/id_001_raw_acceleration.csv") ## ----define_region------------------------------------------------------------ acc_data <- define_region( data = acc_data, start_time = "2021-04-06 15:45:00", end_time = "2021-04-06 15:46:00" ) acc_data ## ----specify_parameters------------------------------------------------------- acc_data <- specify_parameters( data = acc_data, acc_placement = "hip", subj_body_mass = 78 ) acc_data ## ----filter_acc--------------------------------------------------------------- acc_data <- filter_acc(data = acc_data) acc_data ## ----use_resultant------------------------------------------------------------ acc_data <- use_resultant(data = acc_data) acc_data ## ----find_peaks--------------------------------------------------------------- acc_data <- find_peaks(data = acc_data, vector = "resultant") acc_data ## ----predict_loading---------------------------------------------------------- predict_loading( data = acc_data, outcome = "grf", vector = "resultant", model = "walking/running" ) ## ----wrap-up, eval = FALSE---------------------------------------------------- # # Using intermediate steps # acc_data <- read_acc(impactr_example("hip-raw.csv")) # acc_data <- specify_parameters( # data = acc_data, acc_placement = "hip", subj_body_mass = 78 # ) # acc_data <- filter_acc(data = acc_data) # acc_data <- use_resultant(data = acc_data) # acc_data <- find_peaks(data = acc_data, vector = "resultant") # acc_data <- predict_loading( # data = acc_data, # outcome = "grf", # vector = "resultant", # model = "walking/running" # ) # # # Using the base R pipe operator # read_acc(impactr_example("hip-raw.csv")) |> # specify_parameters(acc_placement = "hip", subj_body_mass = 78) |> # filter_acc() |> # use_resultant() |> # find_peaks(vector = "resultant") |> # predict_loading( # outcome = "grf", # vector = "resultant", # model = "walking/running" # )