## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----------------------------------------------------------------------------- library(iAdapt) # Acceptable (p_yes) and unacceptable (p_no) DLT rates used for establishing safety p_no <- 0.40 p_yes <- 0.15 # Likelihood-ratio (LR) threshold K <- 2 # Cohort size used in stage 1 coh.size <- 3 # number of observed DLTs x <- 1 ## ----------------------------------------------------------------------------- LRtox(coh.size, x, p_no, p_yes, K) ## ----------------------------------------------------------------------------- LRtox(coh.size, ndlt = 2, p_no, p_yes, K) ## ----------------------------------------------------------------------------- ntox = 3 # three different types of toxicity coh.size = 3 # number of patients enrolled per dose # Observed AE grades for each patient on tested dose obs = data.frame(tox1 = c(0, 1, 1), tox2 = c(1, 0, 0), tox3 = c(2, 0, 1)) # Toxicity burden weight matrix W = matrix(c(0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 1 0, 0.5, 0.75, 1.0, 1.5, # Burden weight for grades 0-4 for toxicity 2 0, 0.00, 0.00, 0.5, 1), # Burden weight for grades 0-4 for toxicity 3 nrow = ntox, byrow = TRUE) # Acceptable (p2) and unacceptable nTTP values p1 <- 0.35 p2 <- 0.10 LRtox.nTTP(obs, ntox, coh.size, W, p1, p2, K = 2, std.nTTP = 0.15) ## ----------------------------------------------------------------------------- y.eff <- c(9, 1, 0, 34, 10, 27, 38, 42, 60, 75, 48, 62) d.safe <- c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4) rand.prob(y.eff, d.safe)