## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(hypr) ## ----eval = FALSE------------------------------------------------------------- # vignette("hypr-intro", package = "hypr") ## ----------------------------------------------------------------------------- set.seed(123) M <- c(mu1 = 10, mu2 = 20, mu3 = 10, mu4 = 40) # condition means N <- 5 SD <- 10 simdat <- do.call(rbind, lapply(names(M), function(x) { data.frame(X = x, DV = as.numeric(MASS::mvrnorm(N, unname(M[x]), SD^2, empirical = TRUE))) })) simdat$X <- factor(simdat$X) simdat$id <- 1:nrow(simdat) simdat ## ----------------------------------------------------------------------------- trtC <- hypr(mu1~0, mu2~mu1, mu3~mu1, mu4~mu1) ## ----------------------------------------------------------------------------- trtC ## ----------------------------------------------------------------------------- contrasts(simdat$X) <- contr.hypothesis(trtC) contrasts(simdat$X) ## ----------------------------------------------------------------------------- round(coef(summary(lm(DV ~ X, data=simdat))), 3) ## ----------------------------------------------------------------------------- sumC <- hypr(mu1 ~ (mu1+mu2+mu3+mu4)/4, mu2 ~ (mu1+mu2+mu3+mu4)/4, mu3 ~ (mu1+mu2+mu3+mu4)/4) sumC ## ----------------------------------------------------------------------------- contrasts(simdat$X) <- contr.hypothesis(sumC) contrasts(simdat$X) ## ----------------------------------------------------------------------------- contrasts(simdat$X) <- contr.hypothesis( mu1 ~ (mu1+mu2+mu3+mu4)/4, mu2 ~ (mu1+mu2+mu3+mu4)/4, mu3 ~ (mu1+mu2+mu3+mu4)/4 ) contrasts(simdat$X) ## ----------------------------------------------------------------------------- round(coef(summary(lm(DV ~ X, data=simdat))),3)