## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(htestClust) ## ----eval=FALSE--------------------------------------------------------------- # ## syntax for *stats* function # prop.test(x, n, p = NULL, alternative = c("two.sided", "less", "greater"), # conf.level = 0.95, correct = TRUE) # # ## syntax for *htestClust* function # proptestClust(x, id, p = NULL, alternative = c("two.sided", "less", # "greater"), variance = c("sand.null", "sand.est", "emp", "MoM"), # conf.level = 0.95) ## ----------------------------------------------------------------------------- library(htestClust) data(screen8) head(screen8) (tab <- table(screen8$sch.id)) summary(as.vector(tab)) ## ---- fig.width = 7, fig.height = 4------------------------------------------- ### Figure 1 par(mfrow = c(1,2)) icsPlot(x = screen8$math, id = screen8$sch.id, FUN = "mean", pch = 20) icsPlot(x = screen8$read, id = screen8$sch.id, FUN = "mean", pch = 20) ## ---- fig.width = 7, fig.height = 4------------------------------------------- ### Figure 2 par(mfrow = c(1,2)) icsPlot(x = screen8$gender, id = screen8$sch.id, FUN = "prop", ylab = "P(Female)", pch = 20) icsPlot(x = screen8$activity, id = screen8$sch.id, FUN = "prop") ## ----eval=FALSE--------------------------------------------------------------- # ## example code to perform test for ICS (not run due to computational time) # set.seed(100) # ics.math <- icstestClust(screen8$math, screen8$sch.id, B = 1000, print.it = FALSE) # # ics.math # Test of informative cluster size (TF) # data: screen8$math # TF = 0.029686, p-value < 2.2e-16 ## ----------------------------------------------------------------------------- screen8$math.p <- 1*(screen8$math >= 65) proptestClust(screen8$math.p, screen8$sch.id, p = .75, alternative = "great") ## ----------------------------------------------------------------------------- tab <- table(screen8$gender, screen8$activity, screen8$sch.id) ptab <- prop.table(tab, c(1,3)) apply(ptab, c(1,2), mean) ## ----------------------------------------------------------------------------- chisqtestClust(screen8$gender, screen8$activity, screen8$sch.id) ## ----------------------------------------------------------------------------- prop.table(table(screen8$gender, screen8$activity), 1) ## ----------------------------------------------------------------------------- ttestClust(math ~ gender, id = sch.id, data = screen8) ## ----eval=FALSE--------------------------------------------------------------- # ## code to run group-weighted Wilcoxon test analogue (not run due to computational time) # wilcoxtestClust(math ~ gender, id = sch.id, data = screen8, method = "group") ## ----------------------------------------------------------------------------- onewaytestClust(read ~ activity, id = sch.id, data = screen8)