## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(hmcdm) ## ----------------------------------------------------------------------------- N = length(Test_versions) J = nrow(Q_matrix) K = ncol(Q_matrix) L = nrow(Test_order) ## ----------------------------------------------------------------------------- class_0 <- sample(1:2^K, N, replace = L) Alphas_0 <- matrix(0,N,K) for(i in 1:N){ Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1)) } thetas_true = rnorm(N,0,1) tausd_true=0.5 taus_true = rnorm(N,0,tausd_true) G_version = 3 phi_true = 0.8 lambdas_true <- c(-2, 1.6, .4, .055) # empirical from Wang 2017 Alphas <- sim_alphas(model="HO_sep", lambdas=lambdas_true, thetas=thetas_true, Q_matrix=Q_matrix, Design_array=Design_array) table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place itempars_true <- matrix(runif(J*2,.1,.2), ncol=2) RT_itempars_true <- matrix(NA, nrow=J, ncol=2) RT_itempars_true[,2] <- rnorm(J,3.45,.5) RT_itempars_true[,1] <- runif(J,1.5,2) Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array, itempars=itempars_true) L_sim <- sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version) ## ----------------------------------------------------------------------------- output_HMDCM_RT_sep = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_sep",Design_array, 100, 30, Latency_array = L_sim, G_version = G_version, theta_propose = 2,deltas_propose = c(.45,.35,.25,.06)) output_HMDCM_RT_sep summary(output_HMDCM_RT_sep) a <- summary(output_HMDCM_RT_sep) head(a$ss_EAP) ## ----------------------------------------------------------------------------- (cor_thetas <- cor(thetas_true,a$thetas_EAP)) (cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP)) (cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP)) (cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP)) AAR_vec <- numeric(L) for(t in 1:L){ AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t]) } AAR_vec PAR_vec <- numeric(L) for(t in 1:L){ PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0) } PAR_vec ## ----------------------------------------------------------------------------- a$DIC head(a$PPP_total_scores) head(a$PPP_item_means) head(a$PPP_item_ORs) library(bayesplot) pp_check(output_HMDCM_RT_sep, type="total_latency")