## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(hmcdm) ## ----------------------------------------------------------------------------- N = length(Test_versions) J = nrow(Q_matrix) K = ncol(Q_matrix) L = nrow(Test_order) Jt = J/L ## ----------------------------------------------------------------------------- TP <- TPmat(K) Omega_true <- rOmega(TP) class_0 <- sample(1:2^K, N, replace = L) Alphas_0 <- matrix(0,N,K) for(i in 1:N){ Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1)) } Alphas <- sim_alphas(model="FOHM", Omega = Omega_true, N=N, L=L) itempars_true <- matrix(runif(J*2,.1,.2), ncol=2) Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array, itempars=itempars_true) ## ----------------------------------------------------------------------------- output_FOHM = hmcdm(Y_sim,Q_matrix,"DINA_FOHM",Design_array,100,30) output_FOHM summary(output_FOHM) a <- summary(output_FOHM) head(a$ss_EAP) ## ----------------------------------------------------------------------------- AAR_vec <- numeric(L) for(t in 1:L){ AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t]) } AAR_vec PAR_vec <- numeric(L) for(t in 1:L){ PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0) } PAR_vec ## ----------------------------------------------------------------------------- a$DIC head(a$PPP_total_scores) head(a$PPP_item_means) head(a$PPP_item_ORs)