## ----setup, include = FALSE--------------------------------------------------- NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true") knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE, fig.height = 7, fig.width = 7, dpi = 75, purl = NOT_CRAN, eval = NOT_CRAN ) ## ----install_default, eval=FALSE---------------------------------------------- # install.packages("helsinki") ## ----install_remotes, eval=FALSE---------------------------------------------- # library(remotes) # remotes::install_github("ropengov/helsinki") ## ----load, message=FALSE, warning=FALSE, results='hide'----------------------- library(helsinki) ## ----wfs1--------------------------------------------------------------------- input_url <- "https://kartta.hsy.fi/geoserver/wfs" hsy_features <- get_feature_list(base.url = input_url) # Select only features which are related to water utilities and services hsy_vesihuolto <- hsy_features[which(hsy_features$Namespace == "vesihuolto"),] hsy_vesihuolto # We select our feature of interest from this list: Location of waterposts feature_of_interest <- "vesihuolto:VH_Vesipostit_HSY" ## ----wfs2--------------------------------------------------------------------- input_url <- "https://kartta.hsy.fi/geoserver/wfs" feature_of_interest <- "vesihuolto:VH_Vesipostit_HSY" # downloading a feature waterposts <- get_feature(base.url = input_url, typename = feature_of_interest) # Visualizing the location of waterposts if (exists("waterposts")) { if (!is.null(waterposts)) { plot(waterposts$geom) } } ## ----wfs3, eval = FALSE------------------------------------------------------- # input_url <- "https://kartta.hsy.fi/geoserver/wfs" # # # Interactive example with select_feature # selected_feature <- select_feature(base.url = input_url) # feature <- get_feature(base.url = input_url, typename = selected_feature) # # # Skipping a redundant step with parameter get = TRUE # feature <- select_feature(base.url = input_url, get = TRUE) ## ----hsy_examples------------------------------------------------------------- library(ggplot2) pop_grid <- get_vaestotietoruudukko(year = 2018) building_grid <- get_rakennustietoruudukko(year = 2020) # Logarithmic scales to make the visualizations more discernible if (!all(is.null(pop_grid), is.null(building_grid))) { ggplot(pop_grid) + geom_sf(aes(colour=log(asukkaita), fill=log(asukkaita))) ggplot(building_grid) + geom_sf(aes(colour=log(kerala_yht), fill=log(kerala_yht))) } ## ----hsy_examples2------------------------------------------------------------ library(ggplot2) pop_grid2 <- get_vaestotietoruudukko(year = 2011) building_grid2 <- get_rakennustietoruudukko(year = 2011) if (!all(is.null(pop_grid2), is.null(building_grid2))) { ggplot(pop_grid2) + geom_sf(aes(colour=log(ASUKKAITA), fill=log(ASUKKAITA))) ggplot(building_grid2) + geom_sf(aes(colour=log(ASVALJYYS), fill=log(ASVALJYYS))) } ## ----servicemap, message=FALSE, warning=FALSE--------------------------------- # Search for "puisto" (park) (specify q="query") search_puisto <- get_servicemap(query="search", q="puisto") # Study results: 47 variables in the data frame str(search_puisto, max.level = 1) ## ----search_example1---------------------------------------------------------- # Get names for the first 20 results search_puisto$results$name.fi # See what kind of data is given for services names(search_puisto$results) ## ----search_example2---------------------------------------------------------- search_puisto <- get_servicemap(query="search", q="puisto", page_size = 30, page = 2) str(search_puisto) search_puisto$results$name.fi ## ----linkedevents, message=FALSE, warning=FALSE------------------------------- # Search for current events events <- get_linkedevents(query="event") # Get names for the first 20 results events$data$name$fi # See what kind of data is given for events names(events$data) ## ----mapping_example1, eval = FALSE------------------------------------------- # helsinki <- get_city_map(city = "helsinki", level = "suuralue") # espoo <- get_city_map(city = "espoo", level = "suuralue") # vantaa <- get_city_map(city = "vantaa", level = "suuralue") # kauniainen <- get_city_map(city = "kauniainen", level = "suuralue") # # library(ggplot2) # # if (!all(is.null(helsinki), is.null(espoo), is.null(vantaa), is.null(kauniainen), is.null(waterposts))) { # ggplot() + # geom_sf(data = helsinki) + # geom_sf(data = espoo) + # geom_sf(data = vantaa) + # geom_sf(data = kauniainen) + # geom_sf(data = waterposts) # } ## ----mapping_example2, eval=FALSE--------------------------------------------- # map <- get_city_map(city = "helsinki", level = "suuralue") # voting_district <- get_city_map(city = "helsinki", level = "aanestysalue") ## ----mapping_example2_plot, eval=FALSE---------------------------------------- # library(sf) # plot(sf::st_geometry(map)) # plot(sf::st_geometry(voting_district)) ## ----hri_stats1, message=FALSE, warning=FALSE--------------------------------- # Retrieve list of available data stats_list <- get_hri_stats(query="") # Show first results head(stats_list) if (!is.null(stats_list)) { # Retrieve a specific dataset stats_res <- get_hri_stats(query=stats_list[1]) # Show the structure of the results str(stats_res) } ## ----citation, comment=NA----------------------------------------------------- citation("helsinki") ## ----sessioninfo, message=FALSE, warning=FALSE-------------------------------- sessionInfo()