## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(ham) ## ----vlogo, echo=FALSE, out.width="30%", fig.align="center"------------------- knitr::include_graphics("logo.png") ## ----group-------------------------------------------------------------------- gr1 <- group(x="program", y="los", z="month", dataf=hosprog, dist="t", cluster=TRUE) print(gr1$Group.CI) ## ----group2------------------------------------------------------------------- gr2 <- group(x="age", y="los", z="month", dataf=hosprog, dist="t", increment=3, rolling=6, quarts=TRUE) print(gr2$Roll.CI$Rolling) ## ----plotGroup1, fig.dim = c(6, 4.5)------------------------------------------ plot(x=gr1, y="group", order="numeric", lwd=4, gcol= "blue", pcol="red", overall=TRUE, oband=TRUE, ocol="gray", tcol="green", tgt=4.5, cex=2, cex.axis=1, cex.lab=1.1, cex.text=2, cex.main=1.25, adj.alpha=.2) ## ----clustering--------------------------------------------------------------- print(gr1$Clustering) ## ----plotGroup2, fig.dim = c(6, 4.5)------------------------------------------ plot(x=gr1, y="time", lwd=4, gcol=c("red", "blue"), gband=TRUE, overall=TRUE, oband=TRUE, ocol="gray", tgt=4.5, tcol="green", tpline=5, tpcol="yellow", name=TRUE, cex.axis=1, cex.lab=1, cex.text=2, cex.main=1, adj.alpha=.3) ## ----ols---------------------------------------------------------------------- # Model summary summary(assess(hp ~ mpg+wt, data=mtcars, regression="ols")$model) ## ----ols_interpret------------------------------------------------------------ # Model summary interpret(assess(hp ~ mpg+wt, data=mtcars, regression="ols"))$model ## ----ols topcoding propensity------------------------------------------------- m1 <- assess(formula=cost ~ month * program, data=hosprog, intervention = "program", regression="ols", topcode=17150, propensity=c("female","age","risk"), newdata=TRUE) ## ----ols topcoding propensity results----------------------------------------- summary(m1$model) ## ----summary topcoding propensity--------------------------------------------- summary(m1$newdata[, c( "cost","top.cost", "pscore")]) ## ----importance--------------------------------------------------------------- importance(m1$model) ## ----plotImportance, fig.dim = c(6, 4.5)-------------------------------------- #Consider using these graphical parameters par(mar=c(4.2, 2, 3.5, 3)) par(oma = c(0, 0, 0, 3)) plot(importance(m1$model)) ## ----did model 1-------------------------------------------------------------- dm1 <- assess(formula= los ~ ., data=hosprog, intervention = "program", int.time="month", treatment= 5, did="two") ## ----did model 1 results------------------------------------------------------ summary(dm1$DID) ## ----interpret did model 1---------------------------------------------------- interpret(dm1)$did ## ----plotDID1, fig.dim = c(6, 4.5)-------------------------------------------- plot(x=dm1, y="DID", add.legend="topleft", xlim=c(-.05, 1.05), ylim=c(2, 9), main="DID: Length of Stay", col=c("cyan","magenta"), lwd=7, cex=2, cex.axis=2, cex.lab=1.5, cex.main=3, arrow=TRUE, xshift=c(.045), cex.text=1.5, coefs=TRUE, round.c=2, cfact=T, conf.int=TRUE, adj.alpha=0.2 ) ## ----did model 3-------------------------------------------------------------- dm3 <- assess(formula= rdm30 ~ ., data=hosprog, intervention = "program", int.time="month", treatment= 5, did="two") ## ----did model 3 results------------------------------------------------------ summary(dm3$DID) ## ----its model 1-------------------------------------------------------------- im11 <- assess(formula=los ~ ., data=hosp1, intervention = "program", int.time="month", interrupt= 5, its="one") ## ----its model 1 results------------------------------------------------------ summary(im11$ITS) ## ----its model 1 interpretations---------------------------------------------- interpret(im11)$its ## ----plotITS1, fig.dim = c(6, 4.5)-------------------------------------------- plot(im11, "ITS", add.legend="topright", xlim=c(-1, 14), ylim=c(2, 9), main="ITS: Intervention LOS", col="thistle", lwd=7, cex=3, cex.axis=2, cex.lab=1.5, cex.main=3, arrow=TRUE, xshift=c(.25, .25), cex.text=1.5, coefs=TRUE, round.c=2, cfact=T, conf.int=TRUE, adj.alpha=0.2, pos.text= list("ITS.Time"=3, "Intercept"=4), cex.legend=1.25, add.means=TRUE ) ## ----its model 2-------------------------------------------------------------- im12 <- assess(formula=los ~ ., data=hosp1, intervention = "program", int.time="month", interrupt= c(5, 9), its="one") ## ----its model 2 results------------------------------------------------------ summary(im12$ITS) ## ----its model 3-------------------------------------------------------------- im22 <- assess(formula=los ~ ., data=hosprog, intervention = "program", int.time="month", interrupt= c(5, 9), its="two") ## ----its model 3 results------------------------------------------------------ summary(im22$ITS) ## ----its model 3 interpretations---------------------------------------------- interpret(im22)$its ## ----plotAssess, fig.dim = c(6, 4.5)------------------------------------------ plot(im22, "ITS", add.legend="top", xlim=c(-.75, 13.1), ylim=c(2, 9), main="ITS: Length of Stay", col=c("springgreen","thistle"), lwd=7, cex=2, cex.axis=2, cex.lab=1.5, cex.main=3, cex.legend=1.25, arrow=TRUE, xshift=c(0, .5), cex.text=1, coefs=TRUE, round.c=1, pos.text= list("txp5"=3, "post9"=4), tcol="dodgerblue", conf.int=TRUE, adj.alpha=0.3, add.means=TRUE) ## ----its model 4-------------------------------------------------------------- id22 <- assess(formula=death30 ~ ., data=hosprog, intervention = "program", int.time="month", interrupt= c(5, 9), its="two") ## ----its model 4 results------------------------------------------------------ summary(id22$ITS) ## ----cronbachs alpha example-------------------------------------------------- alpha(items=c("i1","i2","i3","i4","i5"), data=cas) ## ----cronbachs alpha interpret------------------------------------------------ interpret(alpha(items=c("i1","i2","i3","i4","i5"), data=cas))