--- title: "Permutation Options in 'gscramble'" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Permutation Options in 'gscramble'} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` When using the function `segments2markers()` there are two options that control the type of permutation of genetic data that is done: - `preserve_individuals`, which can take values of `FALSE`, `"BY_CHROM"` or `TRUE`, and - `preserve_haplotypes`, which takes the values of `FALSE` or `TRUE`. The different values of these options can be applied together to yield $3 \times 2 = 6$ different permutation patterns as displayed in the figure below. Genetic material is always permuted only among members of the same population. Need to say more, but the result of different options is pretty clear. You should only use `preserve_haplotypes = TRUE` if the data are phased. ```{r, echo=FALSE, fig.width=18, fig.height=12, message=FALSE, warning=FALSE} library(tidyverse) library(cowplot) library(gscramble) N <- 12 L <- 15 G <- matrix(paste0(1:N, rep(c("a", "b"), each = 12)), nrow = N, ncol = 2 * L) # make the meta data to go with these Im <- tibble( group = rep(c("pop1", "pop2", "pop3"), times = c(5, 4, 3)), indiv = str_c("ind_", 1:N) ) Mm <- tibble( chrom = rep(c("1", "2", "3"), times = c(4, 5, 6)), ) %>% group_by(chrom) %>% mutate( pos = 1500 * 1:n(), variant_id = str_c("marker_", chrom, "_", pos) ) # turn a matrix with N rows and 2L columns into a tibble # that names the individual gene copies gmat2tib <- function(M) { if(ncol(M) %% 2 != 0) stop("Must be an even number of columns") L <- ncol(M) / 2 N <- nrow(M) tibble( ind = rep(1:N, times = 2 * L), loc = rep(1:L, each = 2 * N), hap = rep(rep(c("a", "b"), each = N), times = L), ind_hap = factor(str_c(ind, hap), levels = paste0(rep(1:N, each = 2), c("a", "b"))), alle = as.vector(M) ) } tib <- gmat2tib(G) chrom_counts <- c(4, 5, 6) chrom_edges <- c(0, cumsum(chrom_counts)) # here we define our color palette for these by hand so we can get the # first group as blues and greens, the second as reds/pinks and oranges, # and the third as browns. indiv_colors <- c( "#a6cee3", "#1f78b4", "cyan", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c", "#fdbf6f", "#ff7f00", "#6a3d9a", "#cab2d6", "purple2" ) # now we can plot that. Let's make a function to do that: plot_gmat_tib <- function(tib) { tib %>% ggplot(aes(x = ind_hap, y = loc)) + geom_raster(aes(fill = factor(as.integer(ind)))) + geom_tile(fill = NA, color = "black", linewidth = 0.05) + geom_text(aes(label = hap)) + geom_vline(xintercept = 0.5 + seq(0, 2*N, by = 2)) + geom_vline(xintercept = 0.5 + 2 * cumsum(c(5, 4, 3)), linewidth = 1.5) + geom_hline(yintercept = 0.5 + chrom_edges, linewidth = 1.5) + geom_hline(yintercept = c(-0.5, max(tib$loc) + 0.5), linewidth = 1.5) + geom_vline(xintercept = c(-0.5, 0.5 + n_distinct(tib$ind_hap)), linewidth = 1.5) + scale_x_discrete(expand = c(0, 0)) + scale_y_discrete(expand = c(0, 0)) + scale_fill_manual(values = indiv_colors) + theme(legend.position = "none") + xlab("Haplotypes in 12 diploids in 3 populations") + ylab("Loci on three chromosomes") } tib_list <- list() # this function rearranges the matrix so that # haplotypes are in columns and markers are in rows Gr <- rearrange_genos(G, Im, Mm) # so, we will want to convert that format to a tibble also. # this function lets us convert ind and hap back to what they were # originally, after setting ind_hap. This way we can get the colors # of the alleles and their original haplotypes that have been permuted into #the new positions. rearranged_gmat2tib <- function(M, old_hap_and_ind = FALSE) { if(ncol(M) %% 2 != 0) stop("Must be an even number of columns") N <- ncol(M) / 2 L <- nrow(M) ret <- tibble( ind = rep(1:N, each = 2 * L), loc = rep(1:L, times = 2 * N), hap = rep(rep(c("a", "b"), each = L), times = N), ind_hap = factor(str_c(ind, hap), levels = paste0(rep(1:N, each = 2), c("a", "b"))), alle = as.vector(M) ) if(old_hap_and_ind == TRUE) { ret <- ret %>% select(-hap, -ind) %>% extract(alle, into = c("ind", "hap"), regex = "^([0-9]+)([ab])$", convert = TRUE) } ret } # then we could read that in tib_list[["Original Samples"]] <- rearranged_gmat2tib(Gr$G[[1]]) set.seed(5) Gs_plain_permute <- perm_gs_by_pops(Gr) plain_perm <- Gs_plain_permute$G_permed[[1]] %>% rearranged_gmat2tib(old_hap_and_ind = TRUE) tib_list[["preserve_individuals = FALSE, preserve_haplotypes = FALSE"]] <- plain_perm set.seed(5) Gs_hap_permute <- perm_gs_by_pops(Gr, preserve_haplotypes = TRUE) tib_list[["preserve_individuals = FALSE, preserve_haplotypes = TRUE"]] <- Gs_hap_permute$G_permed[[1]] %>% rearranged_gmat2tib(old_hap_and_ind = TRUE) set.seed(15) Gs_hap_permute3 <- perm_gs_by_pops(Gr, preserve_individuals = TRUE) tib_list[["preserve_individuals = TRUE, preserve_haplotypes = FALSE"]] <- Gs_hap_permute3$G_permed[[1]] %>% rearranged_gmat2tib(old_hap_and_ind = TRUE) set.seed(21) Gs_hap_permute4 <- perm_gs_by_pops(Gr, preserve_individuals = TRUE, preserve_haplotypes = TRUE) tib_list[["preserve_individuals = TRUE, preserve_haplotypes = TRUE"]] <- Gs_hap_permute4$G_permed[[1]] %>% rearranged_gmat2tib(old_hap_and_ind = TRUE) set.seed(21) by_chrom_haps_false <- perm_gs_by_pops(Gr, preserve_individuals = "BY_CHROM", preserve_haplotypes = FALSE) tib_list[["preserve_individuals = \"BY_CHROM\", preserve_haplotypes = FALSE"]] <- by_chrom_haps_false$G_permed[[1]] %>% rearranged_gmat2tib(old_hap_and_ind = TRUE) set.seed(25) by_chrom_haps_true <- perm_gs_by_pops(Gr, preserve_individuals = "BY_CHROM", preserve_haplotypes = TRUE) tib_list[["preserve_individuals = \"BY_CHROM\", preserve_haplotypes = TRUE"]] <- by_chrom_haps_true$G_permed[[1]] %>% rearranged_gmat2tib(old_hap_and_ind = TRUE) # get just the permuted ones and order them so that they come out the the way want permed_ones_order <- names(tib_list)[c(2, 6, 4, 3, 7, 5)] permed_ones <- bind_rows(tib_list[-1], .id = "option") %>% mutate(option = factor(option, levels = permed_ones_order)) # get the 6 permed ones in facets facets6 <- plot_gmat_tib(permed_ones) + facet_wrap(~option, ncol = 3) + theme( axis.text.x = element_text(angle = 90, vjust = 0.5, size = 12), axis.title = element_text(size = 18, face = "bold"), strip.text = element_text(size = 12, face = "bold") ) # then get the Original Order as a single one orig_samples <- plot_gmat_tib(bind_rows(tib_list[1], .id = "option")) + facet_wrap(~option, ncol = 1) + theme( axis.text.x = element_text(size = 12), axis.title = element_text(size = 18, face = "bold"), strip.text = element_text(size = 12, face = "bold") ) # and now cowplot those together top_row <- plot_grid( NULL, orig_samples, NULL, nrow = 1, rel_widths = c(1, 2.5 , 1), labels = c("", "a)", ""), label_x = -0.06, label_size = 30 ) bottom_row <- plot_grid( facets6, nrow = 1, labels = c("b)"), label_x = -0.004, label_size = 30, label_y = 1.1 ) permy_plot <- plot_grid(top_row, bottom_row, ncol = 1, rel_heights = c(1.4, 2)) # mac preview antialiases the hell out of the PDF. What BS #ggsave(permy_plot, filename = "results/figures/permutations-plot.pdf", width = 18, height = 12) # Try the PNG #ggsave(permy_plot, filename = "results/figures/permutations-plot.png", width = 18, height = 12) permy_plot ```