Type: Package
Title: GLM-Based Ordination Method
Version: 1.0
Date: 2017-05-13
Author: Michael B. Sohn
Maintainer: Michael B. Sohn <msohn@mail.med.upenn.edu>
Description: A zero-inflated quasi-Poisson factor model to display similarity between samples visually in a low (2 or 3) dimensional space.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Packaged: 2017-05-14 00:43:31 UTC; mbsohn
Repository: CRAN
Date/Publication: 2017-05-14 17:30:27 UTC

GLM-Based Ordination Method

Description

preliminary analysis of similarity between samples in a low (2 or 3) dimensional display.

Author(s)

Michael B. Sohn

Maintainer: Michael B. Sohn <msohn@mail.med.upenn.edu>

References

Sohn, M.B. and Li, H. (2017). A GLM-Based Latent Variable Ordination Method for Microbiome Samples (Submitted).

Examples

## Not run: 
# load test data

data(gomms_test_data);

# estimate factor scores
cdat <- as.matrix(gomms_test_data[,-ncol(gomms_test_data)]);
rslt <- gomms(cdat);

# plot estimated factor scores
y <- as.matrix(gomms_test_data$group);
gomms.plot(rslt, y);

## End(Not run)

Probability of a Zero from a Zero State

Description

estimate the probability of a zero from a zero state.

Usage

Qqpois(cdat, eta.hat, mu.hat, dispersion)

Arguments

cdat

count Data.

eta.hat

estimated proportion of zeros from a zero state.

mu.hat

estimated mean count.

dispersion

estimated values for dispersion.

Value

estimated probability of a zero from a zero state.


GLM-Based Ordination Method for Microbiome Samples

Description

estimate factor loadings and scores.

Usage

gomms(X, n.factors = 2, min.prop.nonzeros = 0.05, show.max.delta = FALSE)

Arguments

X

raw count data.

n.factors

number of factors. Default value is 2.

min.prop.nonzeros

minimum proportion of nonzeros allowed in analysis.

show.max.delta

display the maximum different between jth and (j+1)th iterations.

Value

estimated factor scores.

Author(s)

Michael B. Sohn

Maintainer: Michael B. Sohn <msohn@mail.med.upenn.edu>

References

Sohn, M.B. and Li, H. (2017). A GLM-Based Latent Variable Ordination Method for Microbiome Samples (Submitted).


Plot Factor Loadings

Description

plot estimated factor loadings for each sample.

Usage

gomms.plot(X, Y, col.markers = NULL, pch.markers = NULL, ...)

Arguments

X

two dimnsional matrix of factor scores.

Y

one or two dimensional matrix of classification.

col.markers

user specified colors for classification.

pch.markers

user specified plot symbols for classification.

...

optional graphical parameters to be passed.


Test Data

Description

70 samples and 83 features. The last column contains the population identification for each sample.

Usage

data(gomms_test_data)