## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7.2, fig.height = 4 ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----setup, warning = FALSE, message = FALSE---------------------------------- library(mice) library(ggplot2) library(ggmice) ## ----data--------------------------------------------------------------------- dat <- boys ## ----imp, results = "hide"---------------------------------------------------- imp <- mice(dat, m = 3, method = "pmm") ## ----gg, eval=FALSE----------------------------------------------------------- # ggplot(dat, aes(x = age)) # ggmice(dat, aes(x = age)) ## ----inc-con------------------------------------------------------------------ ggmice(dat, aes(age, hgt)) + geom_point() ## ----inc-cat------------------------------------------------------------------ ggmice(dat, aes(reg, hgt)) + geom_point() ## ----inc-clus----------------------------------------------------------------- ggmice(dat, aes(wgt, hgt)) + geom_point() + facet_wrap(~ reg == "city", labeller = label_both) ## ----inc-trans---------------------------------------------------------------- ggmice(dat, aes(wgt * 2.20, hgt / 2.54)) + geom_point() + labs(x = "Weight (lbs)", y = "Height (in)") ## ----------------------------------------------------------------------------- # continuous variable ggmice(dat, aes(age)) + geom_density() + facet_wrap(~ factor(is.na(hgt) == 0, labels = c("observed height", "missing height"))) # categorical variable ggmice(dat, aes(reg)) + geom_bar(fill = "white") + facet_wrap(~ factor(is.na(hgt) == 0, labels = c("observed height", "missing height"))) ## ----imp-same----------------------------------------------------------------- ggmice(imp, aes(age, hgt)) + geom_point() ggmice(imp, aes(reg, hgt)) + geom_point() ggmice(imp, aes(wgt, hgt)) + geom_point() + facet_wrap(~ reg == "city", labeller = label_both) ggmice(imp, aes(wgt * 2.20, hgt / 2.54)) + geom_point() + labs(x = "Weight (lbs)", y = "Height (in)") ## ----imp-strip---------------------------------------------------------------- ggmice(imp, aes(x = .imp, y = hgt)) + geom_jitter(height = 0, width = 0.25) + labs(x = "Imputation number") ## ----imp-box------------------------------------------------------------------ ggmice(imp, aes(x = .imp, y = hgt)) + geom_jitter(height = 0, width = 0.25) + geom_boxplot(width = 0.5, size = 1, alpha = 0.75, outlier.shape = NA) + labs(x = "Imputation number") ## ----facet-------------------------------------------------------------------- purrr::map(c("wgt", "hgt", "bmi"), ~ { ggmice(imp, aes(x = .imp, y = .data[[.x]])) + geom_boxplot() + labs(x = "Imputation number") }) %>% patchwork::wrap_plots() ## ----pattern------------------------------------------------------------------ # create missing data pattern plot plot_pattern(dat) # specify optional arguments plot_pattern( dat, square = TRUE, rotate = TRUE, npat = 3, cluster = "reg" ) ## ----flux--------------------------------------------------------------------- # create influx-outflux plot plot_flux(dat) # specify optional arguments plot_flux( dat, label = FALSE, caption = FALSE ) ## ----correlations------------------------------------------------------------- # create correlation plot plot_corr(dat) # specify optional arguments plot_corr( dat, vrb = c("hgt", "wgt", "bmi"), label = TRUE, square = FALSE, diagonal = TRUE, rotate = TRUE ) ## ----predictormatrix---------------------------------------------------------- # create predictor matrix pred <- quickpred(dat) # create predictor matrix plot plot_pred(pred) # specify optional arguments plot_pred( pred, label = FALSE, square = FALSE, rotate = TRUE, method = "pmm" ) ## ----convergence-------------------------------------------------------------- # create traceplot for one variable plot_trace(imp, "hgt") ## ----session, class.source = 'fold-hide'-------------------------------------- sessionInfo()