## ----packages, echo =TRUE----------------------------------------------------- library(geex) library(inferference) library(dplyr) ## ----simulated_data, echo = TRUE---------------------------------------------- n <- 1000 x <- data_frame( A = rbinom(n, 1, .2), Y0 = rnorm(n, 0, 1), Y1 = rnorm(n, 2 * A, 1), Y = (A*Y1) + (1 - A)*Y0) ## ----ipw_estfun, echo = TRUE-------------------------------------------------- ipw_estFUN <- function(data){ A <- data$A Y <- data$Y function(theta, phat){ ipw0 <- 1/theta[1] ipw1 <- 1/theta[2] # Estimating functions # c( (1 - A) - theta[1], A - theta[2], # Estimating IP weight Y*(1 - A)*ipw0 - theta[3], Y*(A)*ipw1 - theta[4], # Treating IP weight as known Y*A/phat - theta[5] ) } } ## ----ipw_estimation, echo = TRUE---------------------------------------------- phat <- mean(x$A) out <- m_estimate(ipw_estFUN, data = x, inner_args = list(phat = phat), root_control = setup_root_control(start = c(.5, .5, 0, 0, 0))) ## ----ipw_comparison, echo = TRUE---------------------------------------------- ## Comparing point estimates all.equal(mean(x$Y * x$A/phat), coef(out)[4]) all.equal(phat, coef(out)[2]) ## Comparing variance estimates geex_vcov <- diag(vcov(out)) * n # estimates match treating propensity as known all.equal(var(x$Y * x$A/phat) * (n - 1)/n, geex_vcov[5]) # estimates match using influence function approach y <- x$Y * x$A/phat - mean(x$Y * x$A/phat) z <- (x$A - phat) / (phat*(1 - phat)) var(y - predict(lm(y ~ z))) - geex_vcov[4] # close ## ----eefun, echo=TRUE--------------------------------------------------------- eefun <- function(data, model, alpha){ X <- model.matrix(model, data = data) A <- model.response(model.frame(model, data = data)) Y <- data$Y function(theta){ p <- length(theta) p1 <- length(coef(model)) lp <- X %*% theta[1:p1] rho <- plogis(lp) hh <- ((rho/alpha)^A * ((1-rho)/(1-alpha))^(1 - A)) IPW <- 1/(exp(sum(log(hh)))) score_eqns <- apply(X, 2, function(x) sum((A - rho) * x)) ce0 <- mean(Y * (A == 0)) * IPW / (1 - alpha) ce1 <- mean(Y * (A == 1)) * IPW / (alpha) c(score_eqns, ce0 - theta[p - 1], ce1 - theta[p]) } } ## ---- echo = FALSE------------------------------------------------------------ if(packageVersion('inferference') < '0.5.0'){ vaccinesim$Y <- vaccinesim$y } ## ----example2, echo =TRUE----------------------------------------------------- test <- interference( formula = Y | A ~ X1 | group, data = vaccinesim, model_method = 'glm', allocations = c(.35, .4)) mglm <- glm(A ~ X1, data = vaccinesim, family = binomial) ce_estimates <- m_estimate( estFUN = eefun, data = vaccinesim, units = 'group', root_control = setup_root_control(start = c(coef(mglm), .4, .13)), outer_args = list(alpha = .35, model = mglm) ) roots(ce_estimates) # Compare parameter estimates direct_effect(test, allocation = .35)$estimate roots(ce_estimates)[3] - roots(ce_estimates)[4] # conpare SE estimates L <- c(0, 0, 1, -1) Sigma <- vcov(ce_estimates) sqrt(t(L) %*% Sigma %*% L) # from GEEX direct_effect(test, allocation = .35)$std.error # from inferference ## ----dr_estfun, echo = TRUE--------------------------------------------------- dr_estFUN <- function(data, models){ Z <- data$Z Y <- data$Y Xe <- grab_design_matrix( data, rhs_formula = grab_fixed_formula(models$e)) Xm0 <- grab_design_matrix( data, rhs_formula = grab_fixed_formula(models$m0)) Xm1 <- grab_design_matrix( data, rhs_formula = grab_fixed_formula(models$m1)) e_pos <- 1:ncol(Xe) m0_pos <- (max(e_pos) + 1):(max(e_pos) + ncol(Xm0)) m1_pos <- (max(m0_pos) + 1):(max(m0_pos) + ncol(Xm1)) e_scores <- grab_psiFUN(models$e, data) m0_scores <- grab_psiFUN(models$m0, data) m1_scores <- grab_psiFUN(models$m1, data) function(theta){ e <- plogis(Xe %*% theta[e_pos]) m0 <- Xm0 %*% theta[m0_pos] m1 <- Xm1 %*% theta[m1_pos] rd_hat <- (Z*Y - (Z - e) * m1)/e - ((1 - Z) * Y - (Z - e) * m0)/(1 - e) c(e_scores(theta[e_pos]), m0_scores(theta[m0_pos]) * (Z == 0), m1_scores(theta[m1_pos]) * (Z == 1), rd_hat - theta[length(theta)]) } } ## ----estimate_dr-------------------------------------------------------------- estimate_dr <- function(data, propensity_formula, outcome_formula){ e_model <- glm(propensity_formula, data = data, family = binomial) m0_model <- glm(outcome_formula, subset = (Z == 0), data = data) m1_model <- glm(outcome_formula, subset = (Z == 1), data = data) models <- list(e = e_model, m0 = m0_model, m1 = m1_model) nparms <- sum(unlist(lapply(models, function(x) length(coef(x))))) + 1 m_estimate( estFUN = dr_estFUN, data = data, root_control = setup_root_control(start = rep(0, nparms)), outer_args = list(models = models)) } ## ----lunceford_simulation, echo = TRUE---------------------------------------- library(mvtnorm) tau_0 <- c(-1, -1, 1, 1) tau_1 <- tau_0 * -1 Sigma_X3 <- matrix( c(1, 0.5, -0.5, -0.5, 0.5, 1, -0.5, -0.5, -0.5, -0.5, 1, 0.5, -0.5, -0.5, 0.5, 1), ncol = 4, byrow = TRUE) gen_data <- function(n, beta, nu, xi){ X3 <- rbinom(n, 1, prob = 0.2) V3 <- rbinom(n, 1, prob = (0.75 * X3 + (0.25 * (1 - X3)))) hold <- rmvnorm(n, mean = rep(0, 4), Sigma_X3) colnames(hold) <- c("X1", "V1", "X2", "V2") hold <- cbind(hold, X3, V3) hold <- apply(hold, 1, function(x){ x[1:4] <- x[1:4] + tau_1^(x[5])*tau_0^(1 - x[5]) x}) hold <- t(hold)[, c("X1", "X2", "X3", "V1", "V2", "V3")] X <- cbind(Int = 1, hold) Z <- rbinom(n, 1, prob = plogis(X[, 1:4] %*% beta)) X <- cbind(X[, 1:4], Z, X[, 5:7]) data.frame( Y = X %*% c(nu, xi) + rnorm(n), X[ , -1]) } ## ----dr_estimation------------------------------------------------------------ dt <- gen_data(1000, c(0, 0.6, -0.6, 0.6), c(0, -1, 1, -1, 2), c(-1, 1, 1)) geex_results <- estimate_dr(dt, Z ~ X1 + X2 + X3, Y ~ X1 + X2 + X3) ## ----dr_byhand---------------------------------------------------------------- e <- predict(glm(Z ~ X1 + X2 + X3, data = dt, family = "binomial"), type = "response") m0 <- predict(glm(Y ~ X1 + X2 + X3, data = dt, subset = Z==0), newdata = dt) m1 <- predict(glm(Y ~ X1 + X2 + X3, data = dt, subset = Z==1), newdata = dt) del_hat <- with(dt, mean( (Z * Y - (Z - e) * m1)/e)) - with(dt, mean(((1 - Z) * Y - (Z - e) * m0)/(1 - e)))