## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(gaussplotR) ## We'll also use lattice, ggplot2 and metR library(lattice); library(ggplot2); library(metR) ## Load the sample data set data(gaussplot_sample_data) ## The raw data we'd like to use are in columns 1:3 samp_dat <- gaussplot_sample_data[,1:3] ## ----raw_data_contour--------------------------------------------------------- lattice::levelplot( response ~ X_values * Y_values, data = samp_dat, col.regions = colorRampPalette( c("white", "blue") )(100), xlim = c(-5, 0), ylim = c(-1, 4), asp = 1 ) ## ----u_e---------------------------------------------------------------------- gauss_fit_ue <- fit_gaussian_2D(samp_dat) gauss_fit_ue attributes(gauss_fit_ue) ## ----predict_and_plot_ue------------------------------------------------------ ## Generate a grid of x- and y- values on which to predict grid <- expand.grid(X_values = seq(from = -5, to = 0, by = 0.1), Y_values = seq(from = -1, to = 4, by = 0.1)) ## Predict the values using predict_gaussian_2D gauss_data_ue <- predict_gaussian_2D( fit_object = gauss_fit_ue, X_values = grid$X_values, Y_values = grid$Y_values, ) ## Plot via ggplot2 and metR ggplot_gaussian_2D(gauss_data_ue) ## ----c_e---------------------------------------------------------------------- gauss_fit_ce <- fit_gaussian_2D(samp_dat, constrain_orientation = 0) gauss_fit_ce ## ----predict_and_plot_ce------------------------------------------------------ ## Predict the values using predict_gaussian_2D gauss_data_ce <- predict_gaussian_2D( fit_object = gauss_fit_ce, X_values = grid$X_values, Y_values = grid$Y_values, ) ## Plot via ggplot2 and metR ggplot_gaussian_2D(gauss_data_ce) ## ----uel---------------------------------------------------------------------- gauss_fit_uel <- fit_gaussian_2D(samp_dat, method = "elliptical_log") gauss_fit_uel ## Predict the values using predict_gaussian_2D gauss_data_uel <- predict_gaussian_2D( fit_object = gauss_fit_uel, X_values = grid$X_values, Y_values = grid$Y_values, ) ## Plot via ggplot2 and metR ggplot_gaussian_2D(gauss_data_uel) ## ----cel---------------------------------------------------------------------- gauss_fit_cel <- fit_gaussian_2D( samp_dat, method = "elliptical_log", constrain_orientation = -0.66 ) gauss_fit_cel ## Predict the values using predict_gaussian_2D gauss_data_cel <- predict_gaussian_2D( fit_object = gauss_fit_cel, X_values = grid$X_values, Y_values = grid$Y_values, ) ## Plot via ggplot2 and metR ggplot_gaussian_2D(gauss_data_cel) ## ----cir---------------------------------------------------------------------- gauss_fit_cir <- fit_gaussian_2D(samp_dat, method = "circular") gauss_fit_cir ## Predict the values using predict_gaussian_2D gauss_data_cir <- predict_gaussian_2D( fit_object = gauss_fit_cir, X_values = grid$X_values, Y_values = grid$Y_values, ) ## Plot via ggplot2 and metR ggplot_gaussian_2D(gauss_data_cir)