## ------------------------------------------------------------------------ # Generate bimodal data set.seed(42) x<- c(rnorm(1000,-2,1), rnorm(1000,2,1)) # Run Big Merge Tracker on x library("fusionclust") bmt_output<-bmt(x) ## ------------------------------------------------------------------------ # Estimate the number of clusters - k k<- nclust(bmt_output) k ## ------------------------------------------------------------------------ # Generate n by p=50 design matrix with 2 signals and 48 noise features n<-1000 features<-1:50 set.seed(42) noise<- matrix(rnorm(48000,0,1),nrow=1000,ncol=48) # signal 1 ~ mixture of Normals set.seed(42) s1<- c(rnorm(n/2,-1.5,1),rnorm(n/2,1.5,1)) # signal 2 ~ mixture of Log Normal and Normal set.seed(42) s2<- c(rlnorm(n/2,0.2,0.35),rnorm(n/2,4,0.5)) # put it all together x<- cbind(s1,s2,noise) ## ----fig1, fig.height = 4, fig.width = 6, fig.align = "center"----------- library("fusionclust") scores<- cosci_is(x,0) # plot the scores and see which features have higher scores plot(features,scores,type="p",col="red") ## ------------------------------------------------------------------------ features<-cosci_is_select(scores,0.9) features$selected ## ------------------------------------------------------------------------ imp.thresh<- min(scores[features$selected]) imp.thresh