## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, fig.height = 5, fig.width = 7) library(fitur) ## ----discrete----------------------------------------------------------------- set.seed(42) x <- rpois(1000, 3) fitted <- fit_univariate(x, 'pois', type = 'discrete') # density function plot(fitted$dpois(x=0:10), xlab = 'x', ylab = 'dpois') # distribution function plot(fitted$ppois(seq(0, 10, 1)), xlab= 'x', ylab = 'ppois') # quantile function plot(fitted$qpois, xlab= 'x', ylab = 'qpois') # sample from theoretical distribution summary(fitted$rpois(100)) # estimated parameters from MLE fitted$parameters ## ----continuous--------------------------------------------------------------- set.seed(24) x <- rweibull(1000, shape = .5, scale = 2) fitted <- fit_univariate(x, 'weibull') # density function plot(fitted$dweibull, xlab = 'x', ylab = 'dweibull') # distribution function plot(fitted$pweibull, xlab = 'x', ylab = 'pweibull') # quantile function plot(fitted$qweibull, xlab = 'x', ylab = 'qweibull') # sample from theoretical distribution summary(fitted$rweibull(100)) # estimated parameters from MLE fitted$parameters ## ----empiricalDiscrete-------------------------------------------------------- set.seed(562) x <- rpois(100, 5) empDis <- fit_empirical(x) # probability density function plot(empDis$dempDis(0:10), xlab = 'x', ylab = 'dempDis') # cumulative distribution function plot(x = 0:10, y = empDis$pempDis(0:10), #type = 'l', xlab = 'x', ylab = 'pempDis') # quantile function plot(x = seq(.1, 1, .1), y = empDis$qempDis(seq(.1, 1, .1)), type = 'p', xlab = 'x', ylab = 'qempDis') # random sample from fitted distribution summary(empDis$r(100)) empDis$parameters ## ----empiricalContinous------------------------------------------------------- set.seed(562) x <- rexp(100, 1/5) empCont <- fit_empirical(x) # probability density function plot(x = 0:10, y = empCont$dempCont(0:10), xlab = 'x', ylab = 'dempCont') # cumulative distribution function plot(x = 0:10, y = empCont$pempCont(0:10), #type = 'l', xlab = 'x', ylab = 'pempCont') # quantile function plot(x = seq(.1, 1, by = .1), y = empCont$qempCont(seq(.1, 1, by = .1)), type = 'p', xlab = 'x', ylab = 'qempCont') # random sample from fitted distribution summary(empCont$r(100)) empCont$parameters