## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("finalfit") ## ----------------------------------------------------------------------------- library(finalfit) explanatory = c("age.factor", "extent.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% finalfit_newdata(explanatory = explanatory, newdata = list( c("<40 years", "Submucosa", "No"), c("<40 years", "Submucosa", "Yes"), c("<40 years", "Adjacent structures", "No"), c("<40 years", "Adjacent structures", "Yes") )) -> newdata newdata ## ----------------------------------------------------------------------------- library(dplyr) colon_s %>% select(-hospital) %>% ff_expand(age.factor, sex.factor) ## ----------------------------------------------------------------------------- colon_s %>% glmmulti(dependent, explanatory) %>% boot_predict(newdata, estimate_name = "Predicted probability of death", R=100, boot_compare = FALSE, digits = c(2,3)) ## ----eval=FALSE--------------------------------------------------------------- # knitr::kable(table, row.names = FALSE, align = c("l", "l", "l", "r")) ## ----------------------------------------------------------------------------- colon_s %>% glmmulti(dependent, explanatory) %>% boot_predict(newdata, estimate_name = "Predicted probability of death", #compare_name = "Absolute risk difference", R=100, digits = c(2,3)) ## ----eval=FALSE--------------------------------------------------------------- # library(finalfit) # library(ggplot2) # theme_set(theme_bw()) # # explanatory = c("nodes", "extent.factor", "perfor.factor") # dependent = 'mort_5yr' # # colon_s %>% # finalfit_newdata(explanatory = explanatory, rowwise = FALSE, # newdata = list( # rep(seq(0, 30), 4), # c(rep("Muscle", 62), rep("Adjacent structures", 62)), # c(rep("No", 31), rep("Yes", 31), rep("No", 31), rep("Yes", 31)) # ) # ) -> newdata # # colon_s %>% # glmmulti(dependent, explanatory) %>% # boot_predict(newdata, boot_compare = FALSE, # R=100, condense=FALSE) %>% # ggplot(aes(x = nodes, y = estimate, ymin = estimate_conf.low, # ymax = estimate_conf.high, fill=extent.factor))+ # geom_line(aes(colour = extent.factor))+ # geom_ribbon(alpha=0.1)+ # facet_grid(.~perfor.factor)+ # xlab("Number of postive lymph nodes")+ # ylab("Probability of death")+ # labs(fill = "Extent of tumour", colour = "Extent of tumour")+ # ggtitle("Probability of death by lymph node count")