## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( message = FALSE, warning = FALSE, collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% finalfit(dependent, explanatory) %>% knitr::kable(row.names=FALSE) # This line only needed for formatting. ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory) # Note this example uses fig.height=3, fig.width=9 ## ----------------------------------------------------------------------------- library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' random_effect = "hospital" colon_s %>% finalfit(dependent, explanatory, random_effect = random_effect)%>% knitr::kable(row.names=FALSE) # This line only needed for formatting. ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' random_effect = "hospital" colon_s %>% or_plot(dependent, explanatory, random_effect = random_effect) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=2, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' # Run summary_factorlist for variables you wish to include ## Include total_col = TRUE and fit_id = TRUE factorlist = colon_s %>% summary_factorlist(dependent, "age.factor", total_col = TRUE, fit_id = TRUE) # Run full model including factorlist colon_s %>% or_plot(dependent, explanatory, factorlist = factorlist) # Note this example uses fig.height=2, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' random_effect = "hospital" fit = colon_s %>% glmmixed(dependent, explanatory, random_effect) # Equivalent to: fit = colon_s %>% lme4::glmer(mort_5yr ~ age.factor + sex.factor + obstruct.factor + perfor.factor + (1 | hospital), family="binomial", data = .) # Which is incidentally equivalent to: fit = colon_s %>% lme4::glmer(ff_formula(dependent, explanatory, random_effect), family="binomial", data = .) # Plot system.time(colon_s %>% or_plot(dependent, explanatory, random_effect = random_effect, glmfit = fit) ) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, confint_type = "default") # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, remove_ref = TRUE) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, breaks = c(0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.8, 2.4)) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, column_space = c(-0.5, -0.1, 0.5)) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, dependent_label = "Mortality") # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, prefix = "Figure 1 - ") # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, suffix = "") # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, table_text_size = 3) # Note this example uses fig.height=4, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, title_text_size = 12) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) library(ggplot2) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, plot_opts = list(xlim(0.1, 3), xlab("OR (95% CI, log)"), theme(axis.title = element_text(size=10)) ) ) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=10----------------------------------------------- library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = 'mort_5yr' colon_s %>% or_plot(dependent, explanatory, digits = c(3,3,3), confint_sep = " to ", column_space = c(-0.5, -0.1, 0.5)) # Note this example uses fig.height=3, fig.width=10 ## ----------------------------------------------------------------------------- library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = "Surv(time, status)" colon_s %>% finalfit(dependent, explanatory) %>% knitr::kable(row.names=FALSE) # This line only needed for formatting. ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = "Surv(time, status)" colon_s %>% hr_plot(dependent, explanatory) # Note this example uses fig.height=3, fig.width=9 ## ----------------------------------------------------------------------------- library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = "nodes" colon_s %>% finalfit(dependent, explanatory) %>% knitr::kable(row.names=FALSE) # This line only needed for formatting. ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = "nodes" colon_s %>% coefficient_plot(dependent, explanatory) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=3, fig.width=9------------------------------------------------ library(finalfit) explanatory = c("age.factor", "sex.factor", "obstruct.factor", "perfor.factor") dependent = "nodes" colon_s %>% ff_plot(dependent, explanatory) # Note this example uses fig.height=3, fig.width=9 ## ----fig.height=4.5, fig.width=6---------------------------------------------- library(finalfit) explanatory = "perfor.factor" dependent = "Surv(time, status)" colon_s %>% surv_plot(dependent, explanatory) ## ----fig.height=4.5, fig.width=6---------------------------------------------- library(finalfit) explanatory = "perfor.factor" dependent = "Surv(time, status)" colon_s %>% surv_plot(dependent, explanatory, xlab="Time (days)", pval=TRUE, legend="none")