Type: Package
Title: Measurement Level Independent Feature Correlation Matrix
Version: 0.4.0
Maintainer: Guido Moeser <guido.moeser@masem.de>
Description: Uses three different correlation coefficients to calculate measurement-level adequate correlations in a feature matrix: Pearson product-moment correlation coefficient, Intraclass correlation and Cramer's V.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Encoding: UTF-8
LazyData: true
Imports: stats
RoxygenNote: 7.1.0
NeedsCompilation: no
Packaged: 2020-05-18 13:57:00 UTC; Dr. Guido Möser
Author: Guido Moeser [aut, cre], Ilja Muhl [aut]
Repository: CRAN
Date/Publication: 2020-05-27 10:30:02 UTC

Statlog (German Credit Data) Data Set

Description

This dataset classifies people described by a set of attributes as good or bad credit risks.

The variables are as follows:

Usage

data(GermanCredit)

Format

A data frame with 1000 rows and 21 variables

Source

UCI Repository, https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)


Calculates Cramer's V Correlation Coefficient

Description

cv.test returns the Cramer's V correlation coefficient

Usage

cv.test(x, y)

Arguments

x

a vector (categorical or numerical values)

y

a vector (categorical or numerical values)

Details

The function calculates Cramer's V based on the results of an Chi-Square-Test of Independence between two categorical variables

Value

Cramer's V

Examples

cv.test(x = iris$Species, iris$Sepal.Length)

Calculates the Feature Correlation Matrix

Description

featureCorMatrix returns a correlation matrix between all features

Usage

featureCorMatrix(dataframe, absoluteValues = FALSE)

Arguments

dataframe

A data.frame

absoluteValues

A flag stating if only positive correlations should be returned

Details

The function selects automatically the appropriate correlation coefficient regarding the storage type of both variables - If both variable are numerical ones, the Pearson product-moment correlation coefficient will be chosen - If both variables are categorical, Cramer's V will be used - If one variable is a numerical and the other a categorical one, the Intraclass correlation will be calculated

Value

A correlation matrix

Examples

featureCorMatrix(dataframe = iris, absoluteValues = TRUE)

Calculates the Intraclass correlation

Description

The function calculates the Intraclass correlation based on the results of the 'aov' function

Usage

icc(depvar, indvar)

Arguments

depvar

dependent variable, must be numeric

indvar

independent variable, must be categorical

Value

returns the Intraclass correlation

Examples

icc(depvar = iris$Sepal.Length, indvar = iris$Species)