## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(fbst) ## ---- warning=FALSE----------------------------------------------------------- library(rstanarm) set.seed(42) mu_true = 0.25 sigma_true = 1 stanData = data.frame(y=rnorm(50,mu_true,sigma_true)) fit1 <- stan_glm(y ~ NULL, data = stanData, family = gaussian(link = "identity"), prior_intercept = normal(0,10), prior_aux = exponential(1), seed = 12345) ## ----------------------------------------------------------------------------- print(fit1) ## ----------------------------------------------------------------------------- posteriorDrawsMatrix = as.matrix(fit1) head(posteriorDrawsMatrix) ## ----------------------------------------------------------------------------- resFlat = fbst(posteriorDrawsMatrix, nullHypothesisValue=0, dimensionTheta=2, dimensionNullset=1, dim = 2, gridSize = 1000) summary(resFlat) ## ----------------------------------------------------------------------------- resFlat$eValue ## ----fig.align='center', dpi=300, fig.width = 7, fig.height = 5, out.width = "500", out.height = "350"---- plot(resFlat, type = "contour", parNames=c("mu","sigma")) ## ----fig.align='center', dpi=300, fig.width = 7, fig.height = 5, out.width = "600", out.height = "450"---- plot(resFlat, type="persp", parNames=c("mu","sigma")) ## ----------------------------------------------------------------------------- resFlat$eValue ## ----------------------------------------------------------------------------- resFlat$sev_H_0