## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE,eval = FALSE,echo = T) ## ----------------------------------------------------------------------------- # URLs_PETS() # # path = 'oxford-iiit-pet' # path_hr = paste(path, 'images', sep = '/') # path_lr = paste(path, 'crappy', sep = '/') ## ----------------------------------------------------------------------------- # # run this only for the first time, then skip # items = get_image_files(path_hr) # parallel(crappifier(path_lr, path_hr), items) ## ----------------------------------------------------------------------------- # bs = 10 # size = 64 # arch = resnet34() # # get_dls = function(bs, size) { # dblock = DataBlock(blocks = list(ImageBlock, ImageBlock), # get_items = get_image_files, # get_y = function(x) {paste(path_hr, as.character(x$name), sep = '/')}, # splitter = RandomSplitter(), # item_tfms = Resize(size), # batch_tfms = list( # aug_transforms(max_zoom = 2.), # Normalize_from_stats( imagenet_stats() ) # )) # dls = dblock %>% dataloaders(path_lr, bs = bs, path = path) # dls$c = 3L # dls # } # # dls_gen = get_dls(bs, size) ## ----------------------------------------------------------------------------- # dls_gen %>% show_batch(max_n = 4, dpi = 150) ## ----------------------------------------------------------------------------- # wd = 1e-3 # # y_range = c(-3.,3.) # # loss_gen = MSELossFlat() # # create_gen_learner = function() { # unet_learner(dls_gen, arch, loss_func = loss_gen, # config = unet_config(blur=TRUE, norm_type = "Weight", # self_attention = TRUE, y_range = y_range)) # } # # # learn_gen = create_gen_learner() # # learn_gen %>% fit_one_cycle(2, pct_start = 0.8, wd = wd) ## ----------------------------------------------------------------------------- # learn_gen %>% show_results(max_n = 6, dpi = 200)