## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE,eval = FALSE) ## ----------------------------------------------------------------------------- # URLs_MNIST_SAMPLE() ## ----------------------------------------------------------------------------- # # transformations # tfms = aug_transforms(do_flip = FALSE) # path = 'mnist_sample' # bs = 20 # # #load into memory # data = ImageDataLoaders_from_folder(path, batch_tfms = tfms, size = 26, bs = bs) # # learn = cnn_learner(data, resnet18(), metrics = accuracy) ## ----------------------------------------------------------------------------- # learn %>% fit_one_cycle(1, cbs = TerminateOnNaNCallback()) ## ----------------------------------------------------------------------------- # learn %>% fit_one_cycle(10, cbs = EarlyStoppingCallback(monitor='valid_loss', patience = 1)) ## ----------------------------------------------------------------------------- # learn = cnn_learner(data, resnet18(), metrics = accuracy, path = getwd()) # # learn %>% fit_one_cycle(3, cbs = SaveModelCallback(every_epoch = TRUE, fname = 'model')) ## ----------------------------------------------------------------------------- # list.files('models') # # [1] "model_0.pth" "model_1.pth" "model_2.pth" ## ----------------------------------------------------------------------------- # learn %>% fit_one_cycle(10, 1e-2, cbs = ReduceLROnPlateau(monitor='valid_loss', patience = 1)) ## ----------------------------------------------------------------------------- # learn %>% fit_one_cycle(10, 1e-2, cbs = ReduceLROnPlateau(monitor='valid_loss', # min_delta=0.1, patience = 1, min_lr = 1e-8)) ## ----------------------------------------------------------------------------- # learn = cnn_learner(data, resnet18(), metrics = accuracy, path = getwd()) # # learn %>% fit_one_cycle(2, cbs = list(CSVLogger(), # ReduceLROnPlateau(monitor='valid_loss', # min_delta=0.1, patience = 1, min_lr = 1e-8))) # history = read.csv('history.csv') # history