## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(fig.width = 7) # To avoid startup messages when loading epiphy hereinafter: suppressPackageStartupMessages(library(epiphy)) vers <- packageVersion("epiphy") ## ----load_pkg, message=FALSE, warning=FALSE, eval=FALSE----------------------- # install.packages("devtools") # If not already installed. # devtools::install_github("chgigot/epiphy") # Note: Same command for the updates. # library(epiphy) ## ----load_data_sets----------------------------------------------------------- str(arthropods) str(tomato_tswv$field_1929) ## ----create_intensity--------------------------------------------------------- # Count data # We will use only the last assessment date for the arthropods data set: arthropods_t6 <- arthropods[arthropods$t == 3, ] # - Explicit mapping: (cou_t3 <- count(arthropods_t6, mapping(x = x, y = y, t = t, i = i))) # - Total implicit mapping: cou_t3_bis <- count(arthropods_t6) # - Partial implicit mapping: cou_t3_ter <- count(arthropods_t6, mapping(i = i)) all(identical(cou_t3, cou_t3_bis), identical(cou_t3, cou_t3_ter)) # Implicit mapping for incidence data: (inc <- incidence(tomato_tswv$field_1929)) ## ----plot_count--------------------------------------------------------------- plot(cou_t3, tile = FALSE, size = 5) ## ----utilities_intensity, fig.show = "hold"----------------------------------- inc9 <- clump(inc, unit_size = c(x = 3, y = 3)) plot(inc) plot(inc9) ## ----fig.width = 3, fig.show = "hold"----------------------------------------- inc9_t1 <- split(inc9, by = "t")[[1]] inc9_t1_sub <- split(inc9_t1, unit_size = c(x = 4, y = 5))[[6]] plot(inc9_t1) plot(inc9_t1_sub) ## ----agg_idx------------------------------------------------------------------ (inc9_t1_idx <- agg_index(inc9_t1)) ## ----agg_idx_test------------------------------------------------------------- chisq.test(inc9_t1_idx) z.test(inc9_t1_idx) calpha.test(inc9_t1_idx) ## ----fit_distributions, warning=FALSE, fig.width=3, fig.show = "hold"--------- cou_t3_distr <- fit_two_distr(cou_t3) summary(cou_t3_distr) inc9_t1_distr <- fit_two_distr(inc9_t1) summary(inc9_t1_distr) plot(cou_t3_distr, breaks = 17) plot(inc9_t1_distr) ## ----power_laws, fig.width=3, fig.show = "hold"------------------------------- cou <- count(arthropods[arthropods$x <= 6, ]) cou <- split(cou, unit_size = c(x = 3, y = 3)) cou_plaw <- power_law(cou) coef(summary(cou_plaw)) inc9_spl <- split(inc9, unit_size = c(x = 4, y = 5)) inc_plaw <- power_law(inc9_spl) coef(summary(inc_plaw)) plot(cou_plaw) plot(inc_plaw) ## ----threshold_function, fig.width = 3, fig.show = "hold"--------------------- plot(inc9_t1) plot(threshold(inc9_t1)) ## ----spatial_hierarchies------------------------------------------------------ inc_low <- split(inc9, unit_size = c(x = 4, y = 5, t = 1)) inc_high <- lapply(inc_low, threshold) (inc_sphier <- spatial_hier(inc_low, inc_high)) plot(inc_sphier) ## ----sadie, fig.height = 5, fig.show = "hold"--------------------------------- set.seed(123) cou_t3_m <- remap(cou_t3, mapping(x = xm, y = ym)) plot(cou_t3_m) res <- sadie(cou_t3_m) summary(res) plot(res) plot(res, isoclines = TRUE) ## ----mapcomp, fig.height = 5-------------------------------------------------- set.seed(123) res <- mapcomp(cou_t3_m, delta = 4, bandwidth = 60) res plot(res) ## ----pipe_analyses, warning=FALSE--------------------------------------------- library(epiphy) library(magrittr) incidence(tomato_tswv$field_1929) %>% split(by = "t") %>% getElement(1) %>% # To keep the first assessment time. clump(unit_size = c(x = 3, y = 3)) %>% fit_two_distr() %T>% plot() %>% summary() ## ----without_pipes, eval=FALSE------------------------------------------------ # my_data <- incidence(tomato_tswv$field_1929) # my_data <- split(my_data, by = "t") # my_data <- my_data[[1]] # my_data <- clump(my_data, unit_size = c(x = 3, y = 3)) # my_res <- fit_two_distr(my_data) # plot(my_res) # summary(my_res) ## ----pipes2, warning=FALSE---------------------------------------------------- count(arthropods) %>% clump(unit_size = c(x = 3, y = 3)) %>% split(by = "t") %>% lapply(agg_index) %T>% (function(x) plot(sapply(x, function(xx) xx$index), type = "b", xlab = "Observation sequence", ylab = "Aggregation index")) %>% sapply(function(x) chisq.test(x)$p.value)