## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(eider) library(magrittr) ## ----------------------------------------------------------------------------- input_table <- data.frame( id = c(1, 1, 1, 1), admission_date = as.Date(c( "2015-01-01", "2016-01-01", "2016-01-04", "2017-01-01" )), discharge_date = as.Date(c( "2015-01-05", "2016-01-04", "2016-01-08", "2017-01-08" )), cis_marker = c(1, 2, 2, 3), episode_within_cis = c(1, 1, 2, 1), diagnosis = c("A", "B", "C", "B") ) input_table ## ----comment='', echo=FALSE--------------------------------------------------- writeLines(readLines("json_examples/preprocessing1.json")) ## ----------------------------------------------------------------------------- results <- run_pipeline( data_sources = list(input_table = input_table), feature_filenames = "json_examples/preprocessing1.json" ) results$features ## ----------------------------------------------------------------------------- processed_table <- input_table %>% dplyr::group_by(id, cis_marker) %>% dplyr::mutate( admission_date = min(admission_date), discharge_date = max(discharge_date) ) %>% dplyr::ungroup() processed_table ## ----comment='', echo=FALSE--------------------------------------------------- writeLines(readLines("json_examples/preprocessing2.json")) ## ----------------------------------------------------------------------------- results <- run_pipeline( data_sources = list(input_table = input_table), feature_filenames = "json_examples/preprocessing2.json" ) results$features ## ----------------------------------------------------------------------------- input_table_with_sum <- input_table %>% dplyr::mutate(days = as.numeric(discharge_date - admission_date)) input_table_with_sum ## ----comment='', echo=FALSE--------------------------------------------------- writeLines(readLines("json_examples/preprocessing3.json")) ## ----------------------------------------------------------------------------- results <- run_pipeline( data_sources = list(input_table = input_table_with_sum), feature_filenames = "json_examples/preprocessing3.json" ) results$features