## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>") library(knitr) library(egor) ## ----------------------------------------------------------------------------- data("alters32") data("egos32") data("aaties32") ## ----echo=FALSE--------------------------------------------------------------- alters32 %>% head() %>% kable(caption = "First rows of alter data.") egos32 %>% head() %>% kable(caption = "First rows of ego data.") aaties32 %>% head() %>% kable(caption = "First rows of alter-alter tie data.") ## ----------------------------------------------------------------------------- e1 <- egor(alters = alters32, egos = egos32, aaties = aaties32, ID.vars = list( ego = ".EGOID", alter = ".ALTID", source = ".SRCID", target = ".TGTID")) e1 ## ----------------------------------------------------------------------------- e1[e1$ego$age.years > 35, ] ## ----------------------------------------------------------------------------- subset(e1, e1$alter$sex == "w", unit = "alter") ## ----------------------------------------------------------------------------- subset(e1, e1$aatie$weight > 0.5, unit = "aatie") ## ----------------------------------------------------------------------------- e1 %>% filter(income > 36000) e1 %>% activate(alter) %>% filter(country %in% c("USA", "Poland")) e1 %>% activate(aatie) %>% filter(weight > 0.7) ## ----------------------------------------------------------------------------- summary(e1) ## ----------------------------------------------------------------------------- ego_density(e1) ## ----------------------------------------------------------------------------- composition(e1, "age") %>% head() %>% kable() ## ----------------------------------------------------------------------------- alts_diversity_count(e1, "age") alts_diversity_entropy(e1, "age") ## ----------------------------------------------------------------------------- comp_ei(e1, "age", "age") ## ----------------------------------------------------------------------------- EI(e1, "age") %>% head() %>% kable() ## ----------------------------------------------------------------------------- # return results as "wide" tibble count_dyads( object = e1, alter_var_name = "country" ) # return results as "long" tibble count_dyads( object = e1, alter_var_name = "country", return_as = "long" ) ## ----------------------------------------------------------------------------- e2 <- make_egor(15, 32) comp_ply(e2, "age.years", sd, na.rm = TRUE) ## ----------------------------------------------------------------------------- data("egor32") # Simplify networks to clustered graphs, stored as igraph objects graphs <- clustered_graphs(egor32, "age") # Visualize par(mfrow = c(2,2), mar = c(0,0,0,0)) vis_clustered_graphs(graphs[1:3], node.size.multiplier = 1, edge.width.multiplier = 1, label.size = 0.6) graphs2 <- clustered_graphs(make_egor(50, 50)[1:4], "country") vis_clustered_graphs(graphs2[1:3], node.size.multiplier = 1, edge.width.multiplier = 3, label.size = 0.6, labels = FALSE) ## ----------------------------------------------------------------------------- par(mar = c(0, 0, 0, 0), mfrow = c(2, 2)) purrr::walk(as_igraph(egor32)[1:4], plot) purrr::walk(as_network(egor32)[1:4], plot) ## ----fig.height=6, fig.width=8------------------------------------------------ plot(egor32) ## ----fig.height=6, fig.width=8------------------------------------------------ plot(make_egor(32,16), venn_var = "sex", pie_var = "country", type = "egogram")