## ---- include=FALSE, cache=FALSE---------------------------------------------- library("knitr") knitr::opts_knit$set(self.contained = FALSE) knitr::opts_chunk$set(tidy = TRUE, collapse=TRUE, comment = "#>", tidy.opts=list(blank=FALSE, width.cutoff=55)) ## ----------------------------------------------------------------------------- library("ebci") ## If m_2=0, then we get the usual critical value cva(m2=0, kappa=Inf, alpha=0.05)$cv ## Otherwise the critical value is larger: cva(m2=4, kappa=Inf, alpha=0.05)$cv ## Imposing a constraint on kurtosis tightens it cva(m2=4, kappa=3, alpha=0.05)$cv ## ----------------------------------------------------------------------------- ## As Y_i, use fixed effect estimate theta25 of causal effect of neighborhood ## for children with parents at the 25th percentile of income distribution. The ## standard error for this estimate is se25. As predictors use average outcome ## for permanent residents (stayers), stayer25. Let us use 90% CIs, as in ## Armstrong et al r <- ebci(formula=theta25~stayer25, data=cz, se=se25, weights=1/se25^2, alpha=0.1) ## ----------------------------------------------------------------------------- r$delta ## ----------------------------------------------------------------------------- c(r$mu2, r$kappa) ## ----------------------------------------------------------------------------- names(r$df) ## ----------------------------------------------------------------------------- cva(r$df$se[1]^2/r$mu2[1], r$kappa[1], alpha=0.1)$cv*r$df$w_eb[1]*r$df$se[1] r$df$len_eb[1] ## ----------------------------------------------------------------------------- df <- (cbind(cz[!is.na(cz$se25), ], r$df)) df <- df[df$state=="NY", ] knitr::kable(data.frame(cz=df$czname, unshrunk_estimate=df$theta25, estimate=df$th_eb, lower_ci=df$th_eb-df$len_eb, upper_ci=df$th_eb+df$len_eb), digits=3) ## ----------------------------------------------------------------------------- mean(r$df$len_eb) mean(r$df$len_pa) mean(r$df$len_us) ## ----------------------------------------------------------------------------- mean(r$df$len_eb)/mean(r$df$len_pa) mean(r$df$len_eb)/mean(r$df$len_us) ## ----------------------------------------------------------------------------- mean(r$df$ncov_pa)