## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(dynamicSDM) ## ----create directories------------------------------------------------------- project_directory <- file.path(file.path(tempdir(), "dynamicSDM_vignette")) # project_directory<-"your_path_here" dir.create(project_directory) #sample_explan_data <- read.csv(paste0(project_directory, "/extracted_quelea_occ.csv")) ## ----import explanatory data-------------------------------------------------- data("sample_explan_data") ## ----example-spatiotemp_autocorr---------------------------------------------- variablenames<-c("eight_sum_prec","year_sum_prec","grass_crop_percentage") autocorrelation <- spatiotemp_autocorr(sample_explan_data, varname = variablenames, plot = TRUE, temporal.level = c("year")) # can choose month or day too autocorrelation ## ----example-spatiotemp_block------------------------------------------------- data("sample_extent_data") random_cat_layer <- terra::rast(sample_extent_data) random_cat_layer <- terra::setValues(random_cat_layer, sample(0:10, terra::ncell(random_cat_layer), replace = TRUE)) sample_explan_data <- spatiotemp_block(sample_explan_data, spatial.layer = random_cat_layer, spatial.split.degrees = 3, vars.to.block.by = variablenames, temporal.block = "month", n.blocks = 3, iterations = 5000) ## ----example-brt_fit---------------------------------------------------------- sample_explan_data$weights <- (1 - sample_explan_data$REL_SAMP_EFFORT) models <- brt_fit(sample_explan_data, response.col = "presence.absence", varnames = variablenames, block.col = "BLOCK.CATS", weights.col = "weights", distribution = "bernoulli", interaction.depth = 2) ## ----save models, eval=F------------------------------------------------------ # saveRDS(models, file = paste0(project_directory, "/fitted_quelea_SDMs.rds"))