## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----include = FALSE---------------------------------------------------------- ## ----setup-------------------------------------------------------------------- library(dynamicSDM) ## ----check Google, eval=FALSE------------------------------------------------- # library(rgee) # rgee::ee_check() # # library(googledrive) # googledrive::drive_user() # # # Set your user email here # #user.email<-"your_google_email_here" ## ----create directories------------------------------------------------------- project_directory <- file.path(file.path(tempdir(), "dynamicSDM_vignette")) dir.create(project_directory) variablenames<-c("eight_sum_prec","year_sum_prec","grass_crop_percentage") extraction_directories <- file.path(file.path(project_directory,"extraction")) dir.create(extraction_directories) extraction_directory_1 <- file.path(file.path(project_directory,variablenames[1])) dir.create(extraction_directory_1) extraction_directory_2 <- file.path(file.path(project_directory,variablenames[2])) dir.create(extraction_directory_2) extraction_directory_3 <- file.path(file.path(project_directory,variablenames[3])) dir.create(extraction_directory_3) ## ----load data---------------------------------------------------------------- # sample_filt_data<-read.csv(paste0(project_directory,"/filtered_quelea_occ.csv")) data(sample_filt_data) ## ----example-extract_dynamic_coords week, eval=F------------------------------ # # 8-week total precipitation # extract_dynamic_coords(occ.data=sample_filt_data, # datasetname = "UCSB-CHG/CHIRPS/DAILY", # bandname="precipitation", # spatial.res.metres = 5566 , # GEE.math.fun = "sum", # temporal.direction = "prior", # temporal.res = 56, # save.method = "split", # varname = variablenames[1], # save.directory = extraction_directory_1) # ## ----example-extract_dynamic_coords annual,eval=F----------------------------- # # 52-week total precipitation # extract_dynamic_coords(occ.data=sample_filt_data, # datasetname = "UCSB-CHG/CHIRPS/DAILY", # bandname = "precipitation", # spatial.res.metres = 5566 , # GEE.math.fun = "sum", # temporal.direction = "prior", # temporal.res = 364, # save.method = "combined", # varname = variablenames[2], # save.directory = extraction_directory_2) ## ----example-get_moving_window------------------------------------------------ matrix <- get_moving_window(radial.distance = 10000, spatial.res.degrees = 0.05, spatial.ext = c(-35, -6, 10, 40)) matrix ## ----example-extract_buffered_coords,eval=F----------------------------------- # # Total grassland and cereal cropland cells in surrounding area # extract_buffered_coords(occ.data=sample_filt_data, # datasetname = "MODIS/006/MCD12Q1", # bandname="LC_Type5", # spatial.res.metres = 500, # GEE.math.fun = "sum", # moving.window.matrix=matrix, # user.email= user.email, # save.method="split", # temporal.level="year", # categories=c(6,7), # agg.factor = 12, # varname = variablenames[3], # save.directory=extraction_directory_3) ## ----combine extracted data,eval=F-------------------------------------------- # complete.dataset <- extract_coords_combine(varnames = variablenames, # local.directory = c(extraction_directory_1, # extraction_directory_2, # extraction_directory_3)) ## ----save extracted data,eval=F----------------------------------------------- # # Set NA values as zero # complete.dataset[is.na(complete.dataset$grass_crop_percentage),"grass_crop_percentage"]<-0 # # write.csv(complete.dataset, file = paste0(project_directory, "/extracted_quelea_occ.csv")) #