Type: | Package |
Title: | Statistical Tools to Identify Dragon Kings |
Version: | 0.1.0 |
Description: | Statistical tests and test statistics to identify events in a dataset that are dragon kings (DKs). The statistical methods in this package were reviewed in Wheatley & Sornette (2015) <doi:10.2139/ssrn.2645709>. |
License: | GPL-3 |
Encoding: | UTF-8 |
URL: | https://github.com/rrrlw/dragonking |
BugReports: | https://github.com/rrrlw/dragonking/issues |
RoxygenNote: | 6.0.1 |
NeedsCompilation: | no |
Packaged: | 2018-06-17 23:06:56 UTC; rrrlw |
Author: | Raoul Wadhwa [aut, cre], Christian Kelley [aut], Daniel Qin [aut], Osaulenko Viacheslav [aut], Judit Szente [aut], Peter Erdi [aut] |
Maintainer: | Raoul Wadhwa <raoulwadhwa@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2018-06-18 16:32:59 UTC |
dragonking: Statistical tools for identifying dragon kings
Description
This package provide statistical methods to identify events in a dataset that are dragon kings (DKs). The statistical methods in this package were reviewed in: Wheatley S, Sornette D (2015). Multiple outlier detection in samples with exponential & pareto tails: Redeeming the inward approach & detecting dragon kings. Swiss Finance Institute Research Paper Series No. 15-28.
Dixon test statistic to identify dragon kings (DKs)
Description
dixon_stat
calculates the DIxon test statistic to determine whether
there is significant support for the existence of r
DKs in
vals
. This test is less susceptible to swamping and masking, but is
also less powerful than the SS and SRS test statistics.
Usage
dixon_stat(vals, r)
Arguments
vals |
numeric vector with at least 3 elements |
r |
integer indicating number of DKs in |
Value
Dixon test statistic
References
Wheatley S, Sornette D (2015). Multiple outlier detection in samples with exponential & pareto tails: Redeeming the inward approach & detecting dragon kings. Swiss Finance Institute Research Paper Series No. 15-28. <doi:10.2139/ssrn.2645709>
Dixon WJ (1950). Analysis of extreme values. Ann Math Stat, 21(4): 488-506. <doi:10.1214/aoms/1177729747>
Likes J (1967). Distribution of Dixon's statistics in the case of an exponential population. Metrika, 11(1): 46-54. <doi:10.1007/bf02613574>
Examples
# generate a numeric vector with DKs
temp <- c(rexp(100), # exponentially distributed RV
15, 15, 15) # DK elements
# calculate test statistic for DKs
dixon_stat(temp, r = 3)
Statistical test to identify dragon kings (DKs)
Description
dk_test
runs the DK test on the user parameters and returns a
test statistic and corresponding p-value to aid in determining whether
there is significant support for the existence of r
DKs in
vals
.
Usage
dk_test(vals, r)
Arguments
vals |
numeric vector with at least 3 elements |
r |
integer indicating number of DKs in |
Value
DK test statistic and p-value (F distribution)
References
Wheatley S, Sornette D (2015). Multiple outlier detection in samples with exponential & pareto tails: Redeeming the inward approach & detecting dragon kings. Swiss Finance Institute Research Paper Series No. 15-28. <doi:10.2139/ssrn.2645709>
Pisarenko VF, Sornette D (2012). Robust statistical tests of dragon-kings beyond power law distributions. Eur Phys J Special Topics, 205: 95-115. <doi:10.1140/epjst/e2012-01564-8>
Examples
# generate a numeric vector with DKs
temp <- c(rexp(100), # exponentially distributed RV
15, 15, 15) # DK elements
# test for DKs, where r is number of DKs thought to be in temp
results <- dk_test(temp, r = 3)
# print out test statistic (should be large) and p-value (should be small)
print(paste("Test statistic =", results["Test Statistic"]))
print(paste("p-value =", results["p-value"]))
Max-robust-sum (MRS) test statistic to identify dragon kings (DKs)
Description
mrs_stat
calculates the MRS test statistic to determine whether
there is significant support for the existence of r
DKs in
vals
. This test avoids denominator masking.
Usage
mrs_stat(vals, r, m)
Arguments
vals |
numeric vector with at least 3 elements |
r |
integer indicating number of DKs in |
m |
pre-specified maximum number of DKs in |
Value
MRS test statistic
References
Wheatley S, Sornette D (2015). Multiple outlier detection in samples with exponential & pareto tails: Redeeming the inward approach & detecting dragon kings. Swiss Finance Institute Research Paper Series No. 15-28. <doi:10.2139/ssrn.2645709>
Examples
# generate a numeric vector with DKs
temp <- c(rexp(100), # exponentially distributed RV
15, 15, 15) # DK elements
# calculate test statistic for DKs
mrs_stat(temp, r = 2, m = 3)
Max-sum (MS) test statistic to identify dragon kings (DKs)
Description
ms_stat
calculates the MS test statistic to determine whether
there is significant support for the existence of r
DKs in
vals
. This statistic is less susceptible to swamping, but is also
less powerful in the case of clustered outliers, in comparison to the SS
and SRS test statistics.
Usage
ms_stat(vals, r)
Arguments
vals |
numeric vector with at least 3 elements |
r |
integer indicating number of DKs in |
Value
MS test statistic
References
Wheatley S, Sornette D (2015). Multiple outlier detection in samples with exponential & pareto tails: Redeeming the inward approach & detecting dragon kings. Swiss Finance Institute Research Paper Series No. 15-28. <doi:10.2139/ssrn.2645709>
Hawkins DM (1980). Identification of outliers, vol. 11. Chapman and Hall. ISBN: 9789401539944
Kimber AC (1982). Tests for many outliers in an exponential sample. Appl Statist, 31(3): 263-71. <doi:10.2307/2348000>
Examples
# generate a numeric vector with DKs
temp <- c(rexp(100), # exponentially distributed RV
15, 15, 15) # DK elements
# calculate test statistic for DKs
ms_stat(temp, r = 3)
Sum-robust-sum (SRS) test statistic to identify dragon kings (DKs)
Description
srs_stat
calculates the SRS test statistic to determine whether
there is significant support for the existence of r
DKs in
vals
. This test provides robustness to denominator masking.
Usage
srs_stat(vals, r, m)
Arguments
vals |
numeric vector with at least 3 elements |
r |
integer indicating number of DKs in |
m |
pre-specified maximum number of DKs in |
Value
SRS test statistic
References
Wheatley S, Sornette D (2015). Multiple outlier detection in samples with exponential & pareto tails: Redeeming the inward approach & detecting dragon kings. Swiss Finance Institute Research Paper Series No. 15-28. <doi:10.2139/ssrn.2645709>
Iglewicz B, Martinez J (1982). Outlier detection using robust measures of scale. J Stat Comput Simul, 15(4): 285-93. <doi:10.1080/00949658208810595>
Examples
# generate a numeric vector with DKs
temp <- c(rexp(100), # exponentially distributed RV
15, 15, 15) # DK elements
# calculate test statistic for DKs
srs_stat(temp, r = 2, m = 3)
Sum-sum (SS) test statistic to identify dragon kings (DKs)
Description
ss_stat
calculates the SS test statistic to determine whether
there is significant support for the existence of r
DKs in
vals
. This test is susceptible to swamping.
Usage
ss_stat(vals, r)
Arguments
vals |
numeric vector with at least 3 elements |
r |
integer indicating number of DKs in |
Value
SS test statistic
References
Wheatley S, Sornette D (2015). Multiple outlier detection in samples with exponential & pareto tails: Redeeming the inward approach & detecting dragon kings. Swiss Finance Institute Research Paper Series No. 15-28. <doi:10.2139/ssrn.2645709>
Balakrishnan K (1996). Exponential distribution: Theory, methods and applications. CRC Press. pp. 228-30. ISBN: 9782884491921
Chikkagoudar MS, Kunchur SH (1983). Distributions of test statistics for multiple outliers in exponential samples. Commun Stat Theory Methods, 12: 2127-42. <doi:10.1080/03610928308828596>
Lewis T, Fieller NRJ (1979). A recursive algorithm for null distributions for outliers: I gamma samples. Technometrics, 21(3): 371-6. <doi:10.2307/1267762>
Examples
# generate a numeric vector with DKs
temp <- c(rexp(100), # exponentially distributed RV
15, 15, 15) # DK elements
# calculate test statistic for DKs
ss_stat(temp, r = 3)