## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----install, eval = FALSE---------------------------------------------------- # library(dmtools) ## ----refer, echo = FALSE, result = 'asis', warning = FALSE, message = FALSE---- library(knitr) library(dmtools) library(dplyr) refs <- system.file("labs_refer.xlsx", package = "dmtools") refers <- readxl::read_xlsx(refs) kable(refers, caption = "lab reference ranges") ## ----dataset, echo = FALSE, result = 'asis'----------------------------------- ID <- c("01", "02", "03") AGE <- c("19", "20", "22") SEX <- c("f", "m", "m") V1_GLUC <- c("5.5", "4.1", "9.7") V1_GLUC_IND <- c("norm", NA, "norm") V2_AST <- c("30", "48", "31") V2_AST_IND <- c("norm", "norm", "norm") df <- data.frame( ID, AGE, SEX, V1_GLUC, V1_GLUC_IND, V2_AST, V2_AST_IND, stringsAsFactors = F ) kable(df, caption = "dataset") ## ----lab---------------------------------------------------------------------- # "norm" and "no" it is an example, necessary variable for the estimate, get from the dataset # parameter is_post has value FALSE because a dataset has a prefix( V1_ ) in the names of variables refs <- system.file("labs_refer.xlsx", package = "dmtools") obj_lab <- lab(refs, ID, AGE, SEX, "norm", "no", is_post = FALSE) obj_lab <- obj_lab %>% check(df) # ok - analysis, which has a correct estimate of the result obj_lab %>% choose_test("ok") # mis - analysis, which has an incorrect estimate of the result obj_lab %>% choose_test("mis") # skip - analysis, which has an empty value of the estimate obj_lab %>% choose_test("skip") # all analyzes obj_lab %>% get_result() ## ----timelines, echo = FALSE, result = 'asis', warning = F, message = FALSE---- dates <- system.file("dates.xlsx", package = "dmtools") timeline <- readxl::read_xlsx(dates) kable(timeline, caption = "timeline") ## ----dataset_dates, echo = FALSE, result = 'asis'----------------------------- id <- c("01", "02", "03") screen_date_E1 <- c("1991-03-13", "1991-03-07", "1991-03-08") rand_date_E2 <- c("1991-03-15", "1991-03-11", "1991-03-10") ph_date_E3 <- c("1991-03-21", "1991-03-16", "1991-03-16") bio_date_E3 <- c("1991-03-23", "1991-03-16", "1991-03-16") df <- data.frame( id, screen_date_E1, rand_date_E2, ph_date_E3, bio_date_E3, stringsAsFactors = F ) kable(df, caption = "dataset") ## ----date--------------------------------------------------------------------- # use parameter str_date for search columns with dates, default:"DAT" dates <- system.file("dates.xlsx", package = "dmtools") obj_date <- date(dates, id, dplyr::contains, dplyr::matches) obj_date <- obj_date %>% check(df) # out - dates, which are out of the protocol's timeline obj_date %>% choose_test("out") # uneq - dates, which are unequal obj_date %>% choose_test("uneq") # ok - correct dates obj_date %>% choose_test("ok") # all dates obj_date %>% get_result() ## ----rename, eval = FALSE----------------------------------------------------- # rename_dataset("./crfs", "old_name", "new_name", 2)