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Dynamic factor models (DFMs) postulate that a small number of latent factors explain the
common dynamics of a larger number of observed time series (Stock & Watson, 2016). DFMs
provide estimates of these unobserved factors and their joint dynamics, with many applications
in forecasting, time series interpolation, and macroeconomic monitoring, such as the creation of
coincident business cycle indicators (Mariano & Murasawa, 2003). Another popular application is
”nowcasting”, where large volumes of time series data released at higher frequencies are synthesized
to produce real-time estimates of low-frequency leading indicators such as GDP (Bok et al., 2018).

DFMs are set up in State Space form and can be estimated using the Kalman Filter and
several solution algorithms. The most popular one in the economics literature is the Expectation
Maximization (EM) algorithm, due to its robust numerical properties (Doz et al., 2012) and the
popular mixed frequency generalization of Bańbura & Modugno (2014).

1 The Canonical (Exact) DFM

A canonical baseline dynamic factor model can be written as

xt = C0ft + et, et ∼ N(0,R) (1)

ft =

p∑

j=1

Ajft−j + ut, ut ∼ N(0,Q0), (2)

where Eq. 1 is called the measurement or observation equation and Eq. 2 is called transition, state,
or process equation, allowing the unobserved factors ft to evolve according to a VAR(p) process.
These equations do not include trend or intercept terms, as the data xt is made stationary and
standardized (scaled and centered) before estimation. The system’s matrices are

xt n× 1 vector of observed series at time t: (x1t, . . . , xnt)
′ (allows missing data)

ft r × 1 vector of factors at time t: (f1t, . . . , frt)
′

C0 n× r measurement (observation) matrix

Aj r × r state transition matrix at lag j

Q0 r × r state covariance matrix

R n × n measurement (observation) covariance matrix. It is diagonal by the
assumption that all covariation between the series is explained by the factors:
E[xit|x−i,t, ft] = c0ift ∀i, with c0i the i-th row of C0.

This model can be estimated using a classical form of the Kalman Filter and the Expectation
Maximization (EM) algorithm, after transforming it to State Space (stacked, VAR(1)) form

xt = CFt + et, et ∼ N(0,R) (3)

Ft = AFt−1 + ut, ut ∼ N(0,Q), (4)

where xt, et and R are as in Eq. 1, and the other matrices are
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Ft (rp×1) = (f′t, f
′
t−1, . . . , f

′
t−p)

′ = (f1t, . . . , frt, f1,t−1, . . . , fr,t−1, . . . , f1,t−p, . . . , fr,t−p)
′ (5)

C(n×rp) = (C0,0, . . . ,0),where 0 are n× r matrices of zeros for each factor lag (6)

A(rp×rp) =




A1 A2 · · · Ap−1 Ap

I1 0 · · · 0 0
0 I2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ip−1 0




,where 0/I are r × r zero/identity matrices (7)

ut (rp×1) = (u′
t,0

′, . . . ,0′)′,with 0 a r × 1 vector of zeros (8)

Q(rp×rp) =




Q0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ,where 0 are r × r zero matrices. (9)

The estimation of this model via quasi-maximum likelihood using the EM algorithm, with
initial system matrices determined through Principal Components Analysis (suitable for large n),
is described in Doz et al. (2012).

This exact DFM specification is quite restrictive as it assumes that all correlation in the data
is explained by the unobserved common factors. In particular, it assumes

1. Linearity and constant relationships (no structural breaks)

2. Idiosynchratic measurement (observation) errors (R is diagonal)

3. No direct relationship between series and lagged factors (can be relaxed)

4. No relationship between lagged error terms in either measurement or transition equation (no
serial correlation).

Particularly assumption 4 is quite restrictive since it stipulates that all time dynamics in xt

need to be accounted for by the factors.

Within the framework of the exact DFM, assumption 3 can easily be relaxed to allow q lags of
the factors in the measurement equation

xt =

q∑

i=0

Cift−i + et, et ∼ N(0,R). (10)

In this case, the stacked notation remains the same as long as q < r − 1, with observation matrix

C(n×rp) = (C0,C1, . . . ,Cq,0, . . . ,0) (11)

modified to estimate the lagged loadings Ci. However, because of the proliferation of parameters,
this extension has not received much attention in frequentist estimation approaches. Furthermore,
in the presence of significant lagged dynamics, increasing the number of factors r is often successful
in capturing these dynamics, with certain factors loading strongly on the lagged indicators and
others on the contemporaneous ones.

In the current practice of estimating large DFMs of economic time series, series for a given
sector often have unmodeled sector-specific dynamics. Most of the economics literature on DFMs
has thus focused on relaxing restrictions about the error structure in factor models, introducing
the notion of approximate factor models (Stock & Watson, 2016). A particular emphasis has been
placed on relaxing assumption 4, i.e. allowing some of the idiosyncratic dynamics of the time series
to be unexplained by the common factors.
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2 Approximate DFMs

The most common form of approximate DFM, introduced by Chamberlain & Rothschild (1983),
allows for the observation errors et to evolve according to an autoregressive AR(1) process

et = Φet−1 + vt, vt ∼ N(0,R), (12)

where Φ is diagonal n×n with autoregressive parameters ρi along the diagonal and zeros otherwise.
Following Bańbura & Modugno (2014), the autoregressive dynamics can be modeled as part of the
state vector. In the stacked form, the model becomes

xt = CaFa
t (13)

Fa
t = AaFa

t−1 + ua
t , ua

t ∼ N(0,Qa), (14)

where xt is as in Eq. 1, and the other matrices are

Fa
t (rp+n×1) = (f′t, f

′
t−1, . . . , f

′
t−p, e

′
t)

′,where et is n× 1 as in Eq. 12 (15)

Ca
(n×rp+n) = (C0,0, . . . ,0, I),where 0 is n× r and I is n× n (16)

Aa
(rp+n×rp+n) =

(
A 0
0 Φ

)
=




A1 A2 · · · Ap−1 Ap 0
I1 0 · · · 0 0 0
0 I2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · Ip−1 0 0
0 0 · · · 0 0 Φ




,where Φ is n× n as in Eq. 12

(17)

ua
t (rp+n×1) = (u′

t,0
′, . . . ,0′,v′

t)
′,with vt n× 1 as in Eq. 12 (18)

Qa
(rp+n×rp+n) =

(
Q 0
0 R

)
=




Q0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · R


 ,where R is n× n as in Eq. 12. (19)

To still be able to estimate this model using a classical form of the Kalman Filter, Bańbura &
Modugno (2014) introduce an error term zt ∼ N(0, κI) in Eq. 13, with κ a very small number.

Like the exact DFM, this model can also easily be extended to allow for q factor lags in the
observation equation, by estimating an observation matrix

Ca
(n×rp+n) = (C0,C1, . . . ,Cq,0, . . . ,0, I). (20)

The same comments given above about the proliferation of parameters and the possibility to
include additional factors to account for lagged dynamics apply.

In general, Doz et al. (2011, 2012) show that in the presence of serial correlation, the factors
are still consistently estimated as n, T → ∞ using an exact DFM specification. Thus modeling
serial correlation is particularly important in smaller samples. Bańbura & Modugno (2014) also
show that modeling the serial correlation improves forecast accuracy, but only at short horizons.
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3 Mixed Frequency

Building on the work of Mariano & Murasawa (2003), Bańbura & Modugno (2014) and Bok et
al. (2018) (New York FED Nowcast) popularized EM-based estimation of large mixed-frequency
(monthly and quarterly) DFMs as workhorse models in economic nowcasting practice. The key
addition of Mariano & Murasawa (2003) was to model observed quarterly series by unobserved
monthly counterparts and then place appropriate restrictions on the observation matrix (C).

In particular, Mariano & Murasawa (2003) consider the case of an observed quarterly series Xq
t

being the geometric mean of an unobserved monthly series X̃m
t and it’s lags, i.e.

Xq
t = X̃

m 1
3

t X̃
m 1

3
t−1X̃

m 1
3

t−2 , (21)

such that taking the natural log yields

log(Xq
t ) =

1

3
log(X̃m

t ) +
1

3
log(X̃m

t−1) +
1

3
log(X̃m

t−2). (22)

Lagging this equation 3 times and subtracting it from itself yields the (approximate) quarterly
growth rate of the quarterly series

log(Xq
t )−log(Xq

t−3) =
1

3
[log(X̃m

t )−log(X̃m
t−3)]+

1

3
[log(X̃m

t−1)−log(X̃m
t−4)]+

1

3
[log(X̃m

t−2)−log(X̃m
t−5)].

(23)
Adding and subtracting further lags and leads on the right-hand side, and denoting the growth
rate by lowercase letters, i.e. xq

t = log(Xq
t )− log(Xq

t−3) and x̃m
t = log(X̃m

t )− log(X̃m
t−1), yields

xq
t =

1

3
[x̃m

t + x̃m
t−1 + x̃m

t−2] +
1

3
[x̃m

t−1 + x̃m
t−2 + x̃m

t−3] +
1

3
[x̃m

t−2 + x̃m
t−3 + x̃m

t−4] (24)

=
1

3
x̃m
t +

2

3
x̃m
t−1 + x̃m

t−2 +
2

3
x̃m
t−3 +

1

3
x̃m
t−4. (25)

This is the result of Mariano & Murasawa (2003). Bańbura & Modugno (2014) consider instead
the quarterly series to be the product of the unobserved monthly series, i.e. starting from Xq

t =
X̃m

t X̃m
t−1X̃

m
t−2, the final expression is

xq
t = x̃m

t + 2x̃m
t−1 + 3x̃m

t−2 + 2x̃m
t−3 + x̃m

t−4. (26)

Since X̃m
t (and thus x̃m

t ) is unobserved, this approach is equivalent, as only the relative weights on
the lags of the unobserved series matter. We now assume that there exist nQ quarterly variables,
whose vector of unobserved monthly counterparts x̃m

t admits the same DFM representation as the
observed monthly variables, i.e. x̃m

t = Cq
0ft + eqt . Inserting in a vectorized version of Eq. 26 yields

xq
t = Cq

0ft + eqt + 2(Cq
0ft−1 + eqt−1) + 3(Cq

0ft−2 + eqt−2) + 2(Cq
0ft−3 + eqt−3) +Cq

0ft−4 + eqt−4 (27)

= Cq
0(I 2I 3I 2I I)(f′t f

′
t−1 f′t−2 f′t−3 f′t−4)

′ + (I 2I 3I 2I I)(eq′t eq′t−1 eq′t−2 eq′t−3 eq′t−4)
′ (28)

= Cq
0JF

5
t + JE5

t (29)

= CqFq
t , (30)

where the latter is a stacked representation similar to the approximate DFM case, with matrices

Fq
t (5r+5nQ×1) = (F5′

t ,E
5′
t )

′ = (f′t, . . . , f
′
t−4, e

q′
t , . . . , e

q′
t−4)

′,where ft is r × 1 and eqt is nQ × 1 (31)

Cq
(n×5r+5nQ) = (Cq

0J,J) = (Cq
0, 2C

q
0, 3C

q
0, 2C

q
0,C

q
0, I, 2I, 3I, 2I, I),where I is nQ × nQ. (32)

In other words, mixed frequency estimation amounts to modeling the error process of unobserved
variables as part of the state vector and placing restrictions on the observation matrix. Provided
that the number of lags in the transition equation is p > 4, and assuming that quarterly series
xq
t are observed every 3rd month and missing otherwise, the joint monthly-quarterly state space

representation can be modeled as

x̃t = C̃F̃t + ẽt, ẽt ∼ N(0, R̃) (33)

F̃t = ÃF̃t−1 + ũt, ũt ∼ N(0, Q̃), (34)
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with system matrices

x̃t (n×1) = (xm′
t , xq′

t )
′,where xm

t is nM × 1 and xq
t is nQ × 1 (35)

F̃t (rp+5nQ×1) = (f′t, . . . , f
′
t−p, e

q′
t , . . . , e

q′
t−4)

′,where eqt is nQ × 1 as in Eq. 31 (36)

C̃(n×rp+5nQ) =

(
Cm 0 0
Cq

0J 0 J

)
=

(
Cm

0 0 0 0 0 0 0 0 0 0 0
Cq

0 2Cq
0 3Cq

0 2Cq
0 Cq

0 0 I 2I 3I 2I I

)

(37)

ẽt (n×1) = (em′
t , zq′t )

′,where emt is nM × 1, and zqt is nQ × 1 and very small (38)

R̃(n×n) =

(
Rm 0
0 κI

)
,where Rm is nM × nM , I is nQ × nQ, and κ very small (39)

Ã(rp+5nQ×rp+5nQ) =

(
A 0
0 Iq

)
=




A1 A2 · · · Ap−1 Ap 0
I1 0 · · · 0 0 0
0 I2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · Ip−1 0 0
0 0 · · · 0 0 Iq




,where Iq is 5nQ × 5nQ

(40)

ũt (rp+5nQ×1) = (u′
t,0

′, . . . ,0′, eq′t ,0
′, . . . ,0′)′,where eqt is nQ × 1 (41)

Q̃(rp+5nQ×rp+5nQ) =




Q0 0 0 0
0 0 0 0
0 0 Rq 0
0 0 0 0


 ,where Rq is nQ × nQ. (42)

This representation can easily be extended to allow additional lags of monthly variables in the
observation equation, by replacing Cm in Eq. 37 by a suitably altered version as in Eq. 11. It
is also possible to estimate autoregressive parameters, by also including emt into the state vector
F̃, replacing ẽt by a very small amplitude process z̃t with covariance κI, adding autoregressive
parameters Φm and Φq to Ã, and estimating both Rm and Rq inside Q̃. The modified EM
algorithm that respects the restrictions placed on C̃ is detailed in Bańbura & Modugno (2014).
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