--- title: Introduction to `dcmodify` author: Mark P.J. van der Loo and Edwin de Jonge css: "style.css" --- _Rule-based data processing for data cleaning._ Package version `packageVersion("dcmodify")`{.R}. Please use `citation("dcmodify")` to cite the package. ## Introduction The `dcmodify` package allows users to declare (conditional) data processing steps without hard-coding them in an R script. ![_Rule-based data processing_](modify.png "Rule-based data processing") The motivating use case is where domain experts need to frequently update (fix) values of a data set depending on data conditions. Such updates require (1) selecting the cases where the conditions apply, and (2) updating the values. ### Example We create a dataset where we asked some imaginary respondents about their average water consumption per day. ```{.R} water <- data.frame( name = c("Ross", "Robert", "Martin", "Brian", "Simon") , consumption = c(110, 105, 0.15, 95, -100) ) water ``` Here, Martin submitted his water consumption in m^3^ while the others responded in liters. Such a unit of measure error can be detected and fixed. Simon took the engineering approach, interpreted consumption as a _sink_, and put a negative sign in front of his answer. Again, this is a data error that can be detected and fixed easily. If such errors occur frequently, it makes sense to store the treatment. In `dcmodify` this can be solved as follows. ```{.R} library(dcmodify) # define a rule set (here with one rule) rules <- modifier( if ( abs(consumption) <= 1 ) consumption <- 1000*consumption , if ( consumption < 0 ) consumption <- -1 * consumption ) # apply the ruleset to the data out <- modify(water, rules) out ``` In the first step we define a set of conditional data modifying rules of the form: ``` if (some condition) change somthing ``` next, using `modifier()`, these rules are applied record-wise. ## What's the idea In `dcmodify` conditional data modifying rules are first class citizens. Modifying rules can be created, deleted, read from or written to file, filtered, selected, and investigated. And of course, applied to data. In particular, the `rules` object of the previous example is basically a list of class `modifier`. ```{.R} rules ``` For example, we may select one rule and apply it to our original data set. ```{.R} modify(water, rules[2]) ``` We can ask which variables are used in the modifying rules (here: only one). ```{.R} variables(rules) ``` ### Exercises 1. Load the `retailers` dataset from the validate package using `data("retailers", package="validate")`. 2. Create a modifier that (1) sets `other.rev` to zero if it is missing, (2) replaces negative `other.rev` with the absolute value. ## Import/export of rules and rule metadata The `dcmodify` package supports reading/writing rules from free text file, `yaml` files, or data frames. For example, consider the contents of the file `myrules.txt` (to try the following code, create such a file yourself). ``` # myrules.txt # unit of measure error if (abs(consumption) <= 1){ consumption <- 1000*consumption } # sign error if (consumption < 0 ){ consumption <- -1 * consumption } ``` Reading the rules is done with the `.file` argument. ```{.R} rules <- modifier(.file="myrules.txt") rules ``` A second way to store rules is in [yaml](https://yaml.org/) format. This allows one to add metadata to rules, including a name, label or description. To demonstrate this, we will write the rules to `yaml` file and print the file contents. ```{.R} fn <- tempfile() # export rules to yaml format export_yaml(rules,file=fn) # print file contents readLines(fn) |> paste(collapse="\n") |> cat() ``` Finally, it is possible to read rules from (and export to) data frame. A rule data frame must at least contain a `character` column named `rule`; all other columns are considered metadata. ```{.R} d <- data.frame( name = c("U1","S1") , label = c("Unit error", "sign error") ) d$rule <- c( "if(abs(consumption)<=1) consuption <- 1000 * consumption" ,"if(consumption < 0) consumption <- -1 * consumption" ) d ``` Reading from data frame is done with the `.data` argument. ```{.R} myrules <- modifier(.data=d) myrules ``` ### Exercise Using the `retailers` dataset of the previous exercises, define a file with rules that - fill missing `other.rev` with zero (0) - detect large staff cost per staff ratios and reduces the staff costs accordingly (unit of measure is 1000s of EUR, while some records are expressed in EUR). - Similar for total revenue and turnover. See `?retailers` for the meaning of the variables. ## Using reference data It is possible to use data not in the treated dataset in your data modification rules. This so-called reference data needs to be added in the call to `modify()`. ```{.R} dat <- data.frame(x=seq_len(nrow(women))) m <- modifier(if (x > 2) x <- ref$height/2) out <- modify(dat, m, ref=women) head(out) ``` Note that in this form, it is necessary to use `ref$` to refer to the `women` dataset in the context of modifying rules. This can be customized by passing the reference data as a named list or environment. ```{.R} m <- modifier(if (x > 2) x <- women$height/2) out <- modify(dat, m, ref=list(women=women)) head(out,3) ``` Or, equivalently ```{.R} e <- new.env() e$women <- women m <- modifier(if (x > 2) x <- women$height/2) out <- modify(dat, m, ref=e) head(out,3) ``` ## Supported rules The package supports rules of the form ``` if (some condition holds){ change some existing values } ``` where the `else` clause is optional, and the rules are executed record-by-record. There may be multiple expressions in each `{}` block, and it is also allowed to have nested `if-else` statements. ## Tracking changes `dcmodify` allows rule-by-rule change tracking via integration with the [lumberjack](https://cran.r-project.org/package=lumberjack) package[1]. There are many ways of following what happens to a data file, and we refere to [1] for an overview of the possibilities of the `lumberjack` package. Here we demonstrate how to use the cellwise logger, which logs all changes cell-by-cell. ```{.R} library(lumberjack) # create a logger (see ?cellwise) lgr <- cellwise$new(key="name") # create rules rules <- modifier( if ( abs(consumption) <= 1 ) consumption <- 1000*consumption , if ( consumption < 0 ) consumption <- -1 * consumption ) # apply rules, and pass logger object to modify() out <- modify(water, rules, logger=lgr) # check what happened, by dumping the log and reading in # the csv. logfile <- tempfile() lgr$dump(file=logfile) read.csv(logfile) ``` ## References [1] van der Loo MPJ (2021). Monitoring Data in R with the lumberjack Package. _Journal of Statistical Software_, **98**(1), 1--13. [doi:10.18637/jss.v098.i01](https://doi.org/10.18637/jss.v098.i01).