## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.align = "center" ) library(knitr) library(ggplot2) Plot_Theme <- theme(panel.background = element_blank(), panel.grid.major = element_line(color = "grey60", linetype = "dashed"), panel.grid.minor = element_line(color = "grey80", linetype = "dashed"), legend.position = c(0.9, 0.85), legend.background = element_rect(fill = "white", color = "grey60")) Plot_Fill <- scale_fill_manual(name = "Technique", values = c("gray30", "tomato3")) ## ----prep--------------------------------------------------------------------- library(datplot) data(Beazley) ## ----preptable, echo = FALSE-------------------------------------------------- knitr::kable(Beazley[sample(seq_len(nrow(Beazley)), 10, replace = FALSE), ]) ## ----barplot------------------------------------------------------------------ Beazley$DAT_mean <- (Beazley$DAT_max + Beazley$DAT_min) / 2 library(ggplot2) ggplot(Beazley, aes(x = DAT_mean, fill = Technique)) + geom_histogram(binwidth = 25, position = "dodge") + Plot_Theme + Plot_Fill ## ----warning = FALSE---------------------------------------------------------- system.time(result <- datsteps(Beazley, stepsize = 25))[3] system.time(result <- datsteps(Beazley, stepsize = 1))[3] ## ----steps1------------------------------------------------------------------- library(datplot) result <- datsteps(Beazley, stepsize = 25) ggplot(result, aes(x = DAT_step, fill = variable)) + geom_histogram(binwidth = 25, position = "dodge") + Plot_Theme + Plot_Fill ## ----steps2------------------------------------------------------------------- result <- datsteps(Beazley, stepsize = "auto") ggplot(result, aes(x = DAT_step, fill = variable)) + Plot_Theme + Plot_Fill + geom_histogram(binwidth = attributes(result)$stepsize, position = "dodge") ## ----stepstable, echo = FALSE------------------------------------------------- knitr::kable(head(result)) ## ----density one-------------------------------------------------------------- result <- datsteps(Beazley, stepsize = 25) dens <- result dens <- scaleweight(result, var = "all") dens <- density(x = dens$DAT_step, weights = dens$weight) plot(dens) ## ----scaleweight-------------------------------------------------------------- result <- scaleweight(result, var = 2) ## ----scaleweighttable, echo = FALSE------------------------------------------- knitr::kable(head(result)) ## ----ggplot, warning=FALSE---------------------------------------------------- ggplot(data = result, aes(x = DAT_step, fill = variable, weight = weight)) + geom_density(alpha = 0.5) + xlab("Dating") + Plot_Theme + Plot_Fill ## ----ggplot without weight, warning=FALSE------------------------------------- ggplot(data = result, aes(x = DAT_step, fill = variable)) + geom_density(alpha = 0.5) + xlab("Dating") + Plot_Theme + Plot_Fill ## ---- warning = FALSE--------------------------------------------------------- data("Inscr_Bithynia") Inscr_Bithynia <- na.omit(Inscr_Bithynia[, c(1, 3, 8, 9)]) result_bith <- scaleweight(datsteps(Inscr_Bithynia, stepsize = "auto"), var = "all") ggplot(result_bith, aes(x = DAT_step)) + Plot_Theme + Plot_Fill + geom_density(alpha = 0.5, fill = "grey30") + xlab("Dating") ggplot(result_bith, aes(x = DAT_step, weight = weight)) + Plot_Theme + Plot_Fill + geom_density(alpha = 0.5, fill = "grey30") + xlab("Dating") ## ----histogramscale, warning = FALSE, message = FALSE------------------------- histogramscale <- get.histogramscale(result) ## ----ggplot-combination------------------------------------------------------- ggplot(result, aes(x = DAT_step, fill = variable)) + Plot_Theme + Plot_Fill + stat_density(alpha = 0.5, position = "dodge", aes(y = (after_stat(density) * histogramscale), weight = weight)) + geom_histogram(alpha = 0.5, binwidth = attributes(result)$stepsize, position = "dodge") + labs(y = "maximum number of objects per year", x = "Dating") ## ----cumulative demo, fig.height = 10----------------------------------------- data("Inscr_Bithynia") Inscr_Bithynia <- na.omit(Inscr_Bithynia[, c(1, 3, 8, 9)]) Inscr_Bithynia <- Inscr_Bithynia[sample(seq_len(nrow(Inscr_Bithynia)), 5), ] Inscr_Bithynia_steps <- datsteps(Inscr_Bithynia, stepsize = 1, calc = "probability", cumulative = TRUE) ggplot(Inscr_Bithynia_steps, aes(x = DAT_step, y = cumul_prob, fill = variable)) + geom_col() + facet_wrap(. ~ ID, ncol = 1) + labs(y = "Cumulative Probability", x = "Dating", fill = "Origin") + theme(legend.position = "bottom")