## ----results = "asis", message = FALSE, warning = FALSE, eval = FALSE--------- # library(datarobot) ## ----results = "asis", message = FALSE, warning = FALSE, eval = FALSE--------- # ConnectToDataRobot(endpoint = "YOUR-ENDPOINT-HERE", token = "YOUR-API_TOKEN-HERE") ## ---- echo = FALSE, message = FALSE------------------------------------------- library(AmesHousing) Ames <- make_ames() Ames <- Ames[sapply(Ames,is.numeric)] ## ---- echo = TRUE, message = FALSE-------------------------------------------- head(Ames) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # project <- StartProject(dataSource = Ames, # projectName = "AmesVignetteProject", # target = "Sale_Price", # wait = TRUE) ## ---- echo = FALSE------------------------------------------------------------ project <- readRDS("AmesprojectObject.rds") project ## ----echo=FALSE, message=FALSE, warning=FALSE--------------------------------- library(datarobot) listOfAmesModels <- readRDS("listOfAmesModels.rds") fullFrame <- as.data.frame(listOfAmesModels, simple = FALSE) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # listOfAmesModels <- ListModels(project) ## ---- echo = TRUE------------------------------------------------------------- summary(listOfAmesModels) ## ---- echo = TRUE, fig.width = 7, fig.height = 6, fig.cap = "Horizontal barplot of modelType and validation set Gamma Deviance values for all project models"---- plot(listOfAmesModels, orderDecreasing = TRUE) ## ---- echo = TRUE------------------------------------------------------------- modelFrame <- as.data.frame(listOfAmesModels) head(modelFrame[, c("modelType", "validationMetric")]) ## ---- echo = TRUE------------------------------------------------------------- tail(modelFrame[, c("modelType", "validationMetric")]) ## ---- echo = TRUE------------------------------------------------------------- Filter(function(m) grepl("Elastic-Net", m), modelFrame$expandedModel) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # bestModel <- GetRecommendedModel(project, # type = RecommendedModelType$RecommendedForDeployment) # bestPredictions <- Predict(bestModel, Ames) ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # bestModel$modelType ## ---- echo = FALSE, eval = TRUE----------------------------------------------- "eXtreme Gradient Boosted Trees Regressor (Gamma Loss)" ## ---- echo = FALSE, fig.width = 7, fig.height = 6----------------------------- Sale_Price <- Ames$Sale_Price bestPredictions <- readRDS("bestPredictionsAmes.rds") plot(Sale_Price, bestPredictions, xlab="Observed Sale Price", ylab="Predicted Sale Price value", ylim = c(0, 800000)) abline(a = 0, b = 1, lty = 2, lwd = 3, col = "red") title("Best model") ## ---- echo = TRUE, eval = FALSE----------------------------------------------- # impact <- GetFeatureImpact(bestModel) # head(impact) ## ---- echo = FALSE------------------------------------------------------------ impact <- readRDS("IntroFeatureImpactAmes.RDS") head(impact)