## ----eval=TRUE---------------------------------------------------------------- library(ctmle) library(dplyr) set.seed(123) N <- 1000 p = 5 Wmat <- matrix(rnorm(N * p), ncol = p) beta1 <- 4+2*Wmat[,1]+2*Wmat[,2]+2*Wmat[,5] beta0 <- 2+2*Wmat[,1]+2*Wmat[,2]+2*Wmat[,5] tau <- 2 gcoef <- matrix(c(-1,-1,rep(-(3/((p)-2)),(p)-2)),ncol=1) W <- as.matrix(Wmat) g <- 1/(1+exp(W%*%gcoef /3)) A <- rbinom(N, 1, prob = g) epsilon <-rnorm(N, 0, 1) Y <- beta0 + tau * A + epsilon # With initial estimate of Q Q <- cbind(rep(mean(Y[A == 0]), N), rep(mean(Y[A == 1]), N)) time_greedy <- system.time( ctmle_discrete_fit1 <- ctmleDiscrete(Y = Y, A = A, W = data.frame(Wmat), Q = Q, preOrder = FALSE, detailed = TRUE) ) ctmle_discrete_fit2 <- ctmleDiscrete(Y = Y, A = A, W = data.frame(Wmat), preOrder = FALSE, detailed = TRUE) time_preorder <- system.time( ctmle_discrete_fit3 <- ctmleDiscrete(Y = Y, A = A, W = data.frame(Wmat), Q = Q, preOrder = TRUE, order = rev(1:p), detailed = TRUE) ) ## ----eval = TRUE-------------------------------------------------------------- time_greedy time_preorder ## ----eval = TRUE-------------------------------------------------------------- ctmle_discrete_fit1 ## ----eval = TRUE-------------------------------------------------------------- summary(ctmle_discrete_fit1) ## ----eval = TRUE-------------------------------------------------------------- # Generate high-dimensional data set.seed(123) N <- 1000 p = 100 Wmat <- matrix(rnorm(N * p), ncol = p) beta1 <- 4+2*Wmat[,1]+2*Wmat[,2]+2*Wmat[,5]+2*Wmat[,6]+2*Wmat[,8] beta0 <- 2+2*Wmat[,1]+2*Wmat[,2]+2*Wmat[,5]+2*Wmat[,6]+2*Wmat[,8] tau <- 2 gcoef <- matrix(c(-1,-1,rep(-(3/((p)-2)),(p)-2)),ncol=1) W <- as.matrix(Wmat) g <- 1/(1+exp(W%*%gcoef /3)) A <- rbinom(N, 1, prob = g) epsilon <-rnorm(N, 0, 1) Y <- beta0 + tau * A + epsilon # With initial estimate of Q Q <- cbind(rep(mean(Y[A == 0]), N), rep(mean(Y[A == 1]), N)) glmnet_fit <- cv.glmnet(y = A, x = W, family = 'binomial', nlambda = 20) ## ----------------------------------------------------------------------------- lambdas <-glmnet_fit$lambda[(which(glmnet_fit$lambda==glmnet_fit$lambda.min)):length(glmnet_fit$lambda)] ## ----------------------------------------------------------------------------- time_ctmlelasso1 <- system.time( ctmle_fit1 <- ctmleGlmnet(Y = Y, A = A, W = data.frame(W = W), Q = Q, lambdas = lambdas, ctmletype=1, family="gaussian",gbound=0.025, V=5) ) ## ----------------------------------------------------------------------------- time_ctmlelasso2 <- system.time( ctmle_fit2 <- ctmleGlmnet(Y = Y, A = A, W = data.frame(W = W), Q = Q, lambdas = lambdas, ctmletype=2, family="gaussian",gbound=0.025, V=5) ) ## ----------------------------------------------------------------------------- gcv <- stats::predict(glmnet_fit, newx=W, s="lambda.min",type="response") gcv <- bound(gcv,c(0.025,0.975)) s_prev <- glmnet_fit$lambda[(which(glmnet_fit$lambda == glmnet_fit$lambda.min))] * (1+5e-2) gcvPrev <- stats::predict(glmnet_fit,newx = W,s = s_prev,type="response") gcvPrev <- bound(gcvPrev,c(0.025,0.975)) time_ctmlelasso3 <- system.time( ctmle_fit3 <- ctmleGlmnet(Y = Y, A = A, W = W, Q = Q, ctmletype=3, g1W = gcv, g1WPrev = gcvPrev, family="gaussian", gbound=0.025, V = 5) ) ## ----eval = TRUE-------------------------------------------------------------- time_ctmlelasso1 time_ctmlelasso2 time_ctmlelasso3 ## ----eval = TRUE-------------------------------------------------------------- ctmle_fit1 ctmle_fit2 ctmle_fit3 ## ----eval = TRUE-------------------------------------------------------------- lambdas[ctmle_fit1$best_k] ## ----eval = TRUE-------------------------------------------------------------- glmnet_fit$lambda.min ## ----eval = TRUE-------------------------------------------------------------- lasso_fit <- cv.glmnet(x = as.matrix(W), y = A, alpha = 1, nlambda = 100, nfolds = 10) lasso_lambdas <- lasso_fit$lambda[lasso_fit$lambda <= lasso_fit$lambda.min][1:5] # Build SL template for glmnet SL.glmnet_new <- function(Y, X, newX, family, obsWeights, id, alpha = 1, nlambda = 100, lambda = 0,...){ # browser() if (!is.matrix(X)) { X <- model.matrix(~-1 + ., X) newX <- model.matrix(~-1 + ., newX) } fit <- glmnet::glmnet(x = X, y = Y, lambda = lambda, family = family$family, alpha = alpha) pred <- predict(fit, newx = newX, type = "response") fit <- list(object = fit) class(fit) <- "SL.glmnet" out <- list(pred = pred, fit = fit) return(out) } # Use a sequence of estimator to build gn sequence: SL.cv1lasso <- function (... , alpha = 1, lambda = lasso_lambdas[1]){ SL.glmnet_new(... , alpha = alpha, lambda = lambda) } SL.cv2lasso <- function (... , alpha = 1, lambda = lasso_lambdas[2]){ SL.glmnet_new(... , alpha = alpha, lambda = lambda) } SL.cv3lasso <- function (... , alpha = 1, lambda = lasso_lambdas[3]){ SL.glmnet_new(... , alpha = alpha, lambda = lambda) } SL.cv4lasso <- function (... , alpha = 1, lambda = lasso_lambdas[4]){ SL.glmnet_new(... , alpha = alpha, lambda = lambda) } SL.library = c('SL.cv1lasso', 'SL.cv2lasso', 'SL.cv3lasso', 'SL.cv4lasso', 'SL.glm') ## ----------------------------------------------------------------------------- V = 5 folds <-by(sample(1:N,N), rep(1:V, length=N), list) ## ----------------------------------------------------------------------------- gn_seq <- build_gn_seq(A = A, W = W, SL.library = SL.library, folds = folds) ## ----eval = TRUE-------------------------------------------------------------- gn_seq$gn_candidates %>% dim gn_seq$gn_candidates_cv %>% dim gn_seq$folds %>% length ## ----eval = TRUE-------------------------------------------------------------- ctmle_general_fit1 <- ctmleGeneral(Y = Y, A = A, W = W, Q = Q, ctmletype = 1, gn_candidates = gn_seq$gn_candidates, gn_candidates_cv = gn_seq$gn_candidates_cv, folds = folds, V = 5) ctmle_general_fit1