## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=5, fig.height=5 ,fig.align="center" ) fpath <- "" ## ----------------------------------------------------------------------------- library(condvis2) library(mclust) ## ----------------------------------------------------------------------------- data(banknote) bankDA <- MclustDA(banknote[,-1], banknote[,1],verbose=F) ## ----------------------------------------------------------------------------- table(banknote$Status, CVpredict(bankDA, banknote)) ## ----echo=F, eval=F----------------------------------------------------------- # bankDA$models$genuine$modelName # bankDA$models$genuine$G # # bankDA$models$counterfeit$modelName # bankDA$models$counterfeit$G # # bankDA$models$counterfeit ## ----eval=F------------------------------------------------------------------- # svars <- c("Top", "Diagonal") # cvars <- setdiff(names(banknote)[-1], svars) # condvis(data = banknote, model = bankDA, # response="Status", sectionvars=svars,conditionvars=cvars, # pointColor="Status", showsim=TRUE # ) ## ----echo=FALSE, out.width='100%'--------------------------------------------- knitr::include_graphics(paste0(fpath, "mclustda1.png")) ## ----------------------------------------------------------------------------- bankDAe <- MclustDA(banknote[,-1], banknote[,1], modelType="EDDA",verbose=F) ## ----eval=F------------------------------------------------------------------- # condvis(data = banknote, model = list(bankDA=bankDA, bankDAe=bankDAe), # response="Status", sectionvars=svars,conditionvars=cvars, # pointColor="Status", showsim=T # ) ## ----echo=FALSE, out.width='100%'--------------------------------------------- knitr::include_graphics(paste0(fpath, "mclustda6.png")) ## ----------------------------------------------------------------------------- data(banknote) dens2 <- densityMclust(banknote[,c("Diagonal","Left")],verbose=F) summary(dens2) ## ----eval=F------------------------------------------------------------------- # condvis(data = banknote, model = dens2, response=NULL, # sectionvars="Diagonal",conditionvars="Left", # density=T, showdata=T) ## ----echo=FALSE, out.width='100%'--------------------------------------------- knitr::include_graphics(paste0(fpath, "left1.png")) ## ----------------------------------------------------------------------------- dens3 <- densityMclust(banknote[,c("Right", "Bottom", "Diagonal")],verbose=F) summary(dens3) ## ----------------------------------------------------------------------------- library(ks) kdens3 <- kde(banknote[,c("Right", "Bottom", "Diagonal")]) ## ----eval=F------------------------------------------------------------------- # condvis(data = banknote, model = list(mclust=dens3, kde=kdens3), response=NULL, # sectionvars=c("Bottom", "Diagonal"),conditionvars="Right", # density=T, showdata=T) ## ----echo=FALSE, out.width='100%'--------------------------------------------- knitr::include_graphics(paste0(fpath, "dens3Right2.png")) ## ----eval=F------------------------------------------------------------------- # bankC <- Mclust(banknote[,-1],verbose=F) # picks 3 clusters # banknote1 <- banknote # banknote1$cluster <- factor(CVpredict(bankC, banknote)) # # svars <- c("Top", "Diagonal") # cvars <- c("Left", "Right" , "Bottom") # condvis(data = banknote1, model = bankC, # response="cluster", sectionvars=svars,conditionvars=cvars, # pointColor="Status", showsim=TRUE # )