## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set(warning = FALSE, message = FALSE, collapse = TRUE, comment = "#>", out.width = "\\textwidth", fig.height = 4, fig.width = 7, fig.align = "center", dpi = 300) # only build vignettes locally and not for R CMD check knitr::opts_chunk$set(eval = nzchar(Sys.getenv("BUILD_VIGNETTES"))) ## ----libraries---------------------------------------------------------------- # library(colorist) # library(ggplot2) # library(RColorBrewer) ## ----hues-fiespa-default------------------------------------------------------ # # pull metrics, generate default palette, map layers # m1 <- metrics_pull(fiespa_occ) # p1 <- palette_timecycle(12) # map_multiples(m1, p1, labels = names(fiespa_occ), ncol = 4) ## ----echo = FALSE------------------------------------------------------------- # # pull metrics, generate default palette, map layers # m1 <- metrics_pull(fiespa_occ) # p1 <- palette_timecycle(12) ## ----hues-fiespa-custom------------------------------------------------------- # # change palette start position on color wheel # p1_custom <- palette_timecycle(12, start_hue = 60) # # # map layers # map_multiples(m1, p1_custom, labels = names(fiespa_occ), ncol = 4) ## ----hues-elephant-default---------------------------------------------------- # # pull metrics, generate default palette, map layers # m2 <- metrics_pull(elephant_ud) # p2 <- palette_set(2) # map_multiples(m2, p2, labels = c("'Purple People-eater'", "'Jolly Green Giant'"), ncol = 2) ## ----hues-elephant-custom----------------------------------------------------- # # use custom_hues argument to make specific hue choices # p2_custom <- palette_set(2, custom_hues = c(280, 120)) # # # map layers # map_multiples(m2, p2_custom, labels = c("'Purple People-eater'", "'Jolly Green Giant'"), ncol = 2) ## ----opacity-intensity-plot, echo = FALSE, fig.cap = "**Cell opacity as a function of intensity values and `lambda_i`.**"---- # # describe modulus function # modulus <- function(y, lambda) { # if (lambda != 0) { # y_t <- sign(y) * ((abs(y) + 1) ^ lambda - 1) / lambda # } else { # y_t = sign(y) * log(abs(y) + 1) # } # return(y_t) # } # # # create data for plotting # d <- data.frame(y = seq(0, 1, .01), lambda = rep(seq(-12, 12, 3), each = 101)) # for (i in 1:nrow(d)) { # d$y_t[i] <- modulus(d$y[i], d$lambda[i] + 1) / modulus(1, d$lambda[i] + 1) # } # # # plot data describing effects of adjustments to lambda # ggplot(d, aes(y, y_t, group = lambda, color = factor(lambda))) + # geom_path() + # scale_color_brewer(type = "div", palette = "BrBG", direction = 1, # name = "lambda_i") + # xlab("intensity") + # ylab("opacity (apparent intensity)") + # theme(panel.background = element_blank(), # panel.border = element_rect(color = "black", fill = NA), # panel.grid = element_blank(), # aspect.ratio = 1, # legend.key = element_blank()) ## ----opacity-elephant-default------------------------------------------------- # # map one layer # map_single(m2, p2_custom, layer = 2) ## ----opacity-elephant-custom-------------------------------------------------- # # map one layer with adjustment to lambda_i # map_single(m2, p2_custom, layer = 2, lambda_i = -12) ## ----opacity-fisher-default--------------------------------------------------- # # pull metrics, generate default palette, map layers # m3 <- metrics_pull(fisher_ud) # p3 <- palette_timeline(fisher_ud) # map_multiples(m3, p3, labels = names(fisher_ud)) ## ----opacity-fisher-custom---------------------------------------------------- # # map layers with adjustment to lambda_i # map_multiples(m3, p3, labels = names(fisher_ud), lambda_i = 12) ## ----chroma-specificity-plot, echo = FALSE, fig.cap = "**Cell chroma as a function of specificity values and `lambda_s`.**"---- # # get colors from palette and edit # cols <- brewer.pal(9, "RdGy") # cols[5] <- "#F5F5F5" # names(cols) <- seq(-12, 12, 3) # # # plot data describing effects of adjustments to lambda_s # ggplot(d, aes(100 * y, 100 * y_t, group = lambda, color = factor(lambda))) + # geom_path() + # scale_color_manual(values = cols, name = "lambda_s") + # xlab("specificity") + # ylab("chroma (apparent specificity)") + # theme(panel.background = element_blank(), # panel.border = element_rect(color = "black", fill = NA), # panel.grid = element_blank(), # aspect.ratio = 1, # legend.key = element_blank()) ## ----chroma-fisher-default---------------------------------------------------- # # distill metrics, visualize metrics in a single map, create legend # m3_distill <- metrics_distill(fisher_ud) # map_single(m3_distill, p3, lambda_i = -5) # legend_timeline(p3, time_labels = c("April 7", "April 15")) ## ----chroma-fisher-custom----------------------------------------------------- # # visualize metrics in a single map with adjustment to lambda_s # map_single(m3_distill, p3, lambda_i = -5, lambda_s = 12) ## ----chroma-fiespa-default---------------------------------------------------- # # distill metrics, visualize metrics in a single map, create legend # m1_distill <- metrics_distill(fiespa_occ) # map_single(m1_distill, p1) # legend_timecycle(p1, origin_label = "Jan 1") ## ----chroma-fiespa-custom----------------------------------------------------- # # visualize metrics in a single map with adjustment to lambda_s # map_single(m1_distill, p1, lambda_s = -12)