## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, eval=FALSE) ## ----------------------------------------------------------------------------- # library(cloudml) # # # copy from a local directory to a bucket # gs_copy("training-data", "gs://quarter-deck-529/training-data") # # # copy from a bucket to a local directory # gs_copy("gs://quarter-deck-529/training-data", "training-data") ## ----------------------------------------------------------------------------- # # synchronize a bucket and a local directory # gs_rsync("gs://quarter-deck-529/training-data", "training-data") ## ----------------------------------------------------------------------------- # library(tfdatasets) # library(cloudml) # # data_dir <- gs_data_dir("gs://mtcars-data") # mtcars_csv <- file.path(data_dir, "mtcars.csv") # # mtcars_dataset <- csv_dataset(mtcars_csv) %>% # dataset_prepare(x = c(mpg, disp), y = cyl) ## ----------------------------------------------------------------------------- # library(cloudml) # library(readr) # data_dir <- gs_data_dir_local("gs://quarter-deck-529/training-data") # train_data <- read_csv(file.path(data_dir, "train.csv")) # test_data <- read_csv(file.path(data_dir, "test.csv")) ## ----------------------------------------------------------------------------- # train_generator <- flow_images_from_directory( # gs_data_dir_local("gs://quarter-deck-529/images/train"), # image_data_generator(rescale = 1/255), # target_size = c(150, 150), # batch_size = 32, # class_mode = "binary" # ) ## ----------------------------------------------------------------------------- # library(keras) # library(cloudml) # # # define a flag for the location of the data directory # FLAGS <- flags( # flag_string("data_dir", "data") # ) # # # determine the location of the directory (during local development this will # # be the default "data" subdirectory specified in the FLAGS declaration above) # data_dir <- gs_data_dir_local(FLAGS$data_dir) # # # read the data # train_data <- read_csv(file.path(FLAGS$data_dir, "train.csv")) # ## ----------------------------------------------------------------------------- # gcloud_terminal()