## ---- warning=FALSE, message=FALSE, echo=FALSE-------------------------------- library(knitr) opts_chunk$set( comment = "", #fig.width = 12, message = FALSE, warning = FALSE, tidy.opts = list( keep.blank.line = TRUE, width.cutoff = 150 ), eval = FALSE, error = TRUE ) ## ----eval=FALSE--------------------------------------------------------------- # aws.s3::put_object( # bucket = "project-data", # object = "project-1/models/glm.rds", # file = "models/glm.rds" # ) ## ----eval=FALSE--------------------------------------------------------------- # cloud_s3_upload("models/glm.rds") ## ----eval=FALSE--------------------------------------------------------------- # library(cloudfs) # cloud_drive_attach() ## ----eval=FALSE--------------------------------------------------------------- # library(ggplot2) # p <- ggplot(mtcars, aes(mpg, disp)) + geom_point() # if (!dir.exists("plots")) dir.create("plots") # ggsave(plot = p, filename = "plots/scatterplot.png") ## ----eval=FALSE--------------------------------------------------------------- # cloud_drive_upload("plots/scatterplot.png") ## ----------------------------------------------------------------------------- # library(dplyr, quietly = TRUE) # summary_df <- # mtcars %>% # group_by(cyl) %>% # summarise(across(disp, mean)) ## ----eval=FALSE--------------------------------------------------------------- # cloud_drive_write(summary_df, "results/mtcars_summary.xlsx") ## ----eval=FALSE--------------------------------------------------------------- # cloud_drive_write( # p, "plots/scatterplot.png", # fun = \(x, file) # ggsave(plot = x, filename = file) # ) ## ----eval=FALSE--------------------------------------------------------------- # cloud_drive_write(datasets::airquality, "data/airquality.csv") # cloud_drive_write(datasets::trees, "data/trees.csv") # cloud_drive_write(datasets::beaver1, "data/beaver1.csv") ## ----eval=FALSE--------------------------------------------------------------- # cloud_drive_ls("data") # #> # A tibble: 3 × 5 # #> name type last_modified size_b id # #> # #> 1 airquality.csv csv 2023-09-12 08:04:46 2890 1CXTi1A… # #> 2 beaver1.csv csv 2023-09-12 08:04:50 1901 1Fg4s1O… # #> 3 trees.csv csv 2023-09-12 08:04:48 400 1vDYBVt… ## ----eval=FALSE--------------------------------------------------------------- # cloud_drive_ls("data") %>% # cloud_drive_download_bulk() ## ----eval=FALSE--------------------------------------------------------------- # all_data <- # cloud_drive_ls("data") %>% # cloud_drive_read_bulk() ## ----eval=FALSE--------------------------------------------------------------- # library(ggplot2) # p1 <- ggplot(mtcars, aes(mpg, disp)) + geom_point() # p2 <- ggplot(mtcars, aes(cyl)) + geom_bar() # # plots_list <- # list("plot_1" = p1, "plot_2" = p2) %>% # cloud_object_ls(path = "plots", extension = "png", suffix = "_newsletter") # # plots_list %>% # cloud_drive_write_bulk(fun = \(x, file) ggsave(plot = x, filename = file)) ## ----eval=FALSE--------------------------------------------------------------- # cloud_local_ls("plots") %>% # filter(type == "png") %>% # cloud_drive_upload_bulk()