## ----echo=FALSE,eval=FALSE---------------------------------------------------- # options(width=80) ## ----eval=FALSE--------------------------------------------------------------- # library(catdata) # data(dust) ## ----eval=FALSE--------------------------------------------------------------- # library(rpart) ## ----fig.width=8,eval=FALSE--------------------------------------------------- # tree1 <-rpart(as.factor(bronch) ~ years, data = dust, method = "class", # control = rpart.control(cp = 0.001, parms=list(split='information'), # maxdepth = 4)) # plot(tree1, xpd=TRUE) # text(tree1) ## ----eval=FALSE--------------------------------------------------------------- # pred <- predict(tree1) # year<- dust$years # year [dust$years<15.5] <- 1 # year [dust$years>15.5 & dust$years<36.5] <- 2 # year [dust$years>36.5 & dust$years<47.5] <- 3 # year [dust$years>47.5 & dust$years<50.5] <- 4 # year [dust$years>50.5] <- 5 # # pre5 <- unique( pred[,2][year==5]) # pre4 <- unique( pred[,2][year==4]) # pre3 <- unique( pred[,2][year==3]) # pre2 <- unique( pred[,2][year==2]) # pre1 <- unique( pred[,2][year==1]) # # meanyear <- c() # # for (i in min(dust$years):max(dust$years)){ # meanyear[i] <- sum(dust$bronch[dust$year==i]) # if(sum(dust$bronch[dust$year==i])!=0){ # meanyear[i] <- mean(dust$bronch[dust$year==i]) # } # } # # dust$means<- rep(2, nrow(dust)) # # for (k in 1:nrow(dust)){ # dust$means[k] <- meanyear[dust$years[k]] # } ## ----fig.width=8,eval=FALSE--------------------------------------------------- # plot(dust$years, dust$means, xlab="years",ylab="") # segments(x0=3,x1=15.5,y0=pre1) # segments(x0=15.5,x1=15.5,y0=pre1,y1=pre2) # segments(x0=15.5,x1=36.5,y0=pre2) # segments(x0=36.5,x1=36.5,y0=pre2,y1=pre3) # segments(x0=36.5,x1=47.5,y0=pre3) # segments(x0=47.5,x1=47.5,y0=pre3,y1=pre4) # segments(x0=47.5,x1=50.5,y0=pre4) # segments(x0=50.5,x1=50.5,y0=pre4,y1=pre5) # segments(x0=50.5,x1=66,y0=pre5) ## ----eval=FALSE--------------------------------------------------------------- # library(party) ## ----fig.width=8,eval=FALSE--------------------------------------------------- # treeP1 <-ctree(as.factor(bronch) ~ years, data = dust) # plot(treeP1) ## ----eval=FALSE--------------------------------------------------------------- # year<- dust$years # year [dust$years<7.5] <- 1 # year [dust$years>7.5 & dust$years<15.5] <- 2 # year [dust$years>15.5 & dust$years<36.5] <- 3 # year [dust$years>36.5] <- 4 # # pre4 <- mean(dust$bronch[year==4]) # pre3 <- mean(dust$bronch[year==3]) # pre2 <- mean(dust$bronch[year==2]) # pre1 <- mean(dust$bronch[year==1]) ## ----fig.width=8,eval=FALSE--------------------------------------------------- # plot(dust$years, dust$means, xlab="years",ylab="") # segments(x0=3,x1=7.5,y0=pre1) # segments(x0=7.5,x1=7.5,y0=pre1,y1=pre2) # segments(x0=7.5,x1=15.5,y0=pre2) # segments(x0=15.5,x1=15.5,y0=pre2,y1=pre3) # segments(x0=15.5,x1=36.5,y0=pre3) # segments(x0=36.5,x1=36.5,y0=pre3,y1=pre4) # segments(x0=36.5,x1=66,y0=pre4) # ## ----fig.width=8,eval=FALSE--------------------------------------------------- # treeP2 <-ctree(as.factor(bronch) ~ smoke + years + dust, data = dust) # plot(treeP2) ## ----echo=FALSE,results='hide',eval=FALSE------------------------------------- # detach(package:rpart) # detach(package:party)