## ----echo=FALSE,eval=FALSE---------------------------------------------------- # options(width=80) ## ----results='hide',eval=FALSE------------------------------------------------ # library(catdata) # data(birth) # attach(birth) ## ----eval=FALSE--------------------------------------------------------------- # intensive <- rep(0,length(Intensive)) # intensive[Intensive>0] <- 1 # Intensive <- intensive # # previous <- Previous # previous[previous>1] <- 2 # Previous <- previous ## ----eval=FALSE--------------------------------------------------------------- # library(gee) ## ----eval=FALSE--------------------------------------------------------------- # library(VGAM) # Birth <- as.data.frame(na.omit(cbind(Intensive, Cesarean, Sex, Weight, Previous, # AgeMother))) # detach(birth) # bivarlogit <- vglm(cbind(Intensive , Cesarean) ~ Weight + AgeMother + # as.factor(Sex) + as.factor(Previous), binom2.or(zero=NULL), data=Birth) # summary(bivarlogit) ## ----eval=FALSE--------------------------------------------------------------- # n <- dim(Birth)[1] # ID <- rep(1:n,2) # # InterceptInt <- InterceptCes <- rep(1, 2*n) # InterceptInt[(n+1):(2*n)] <- InterceptCes[1:n] <- 0 # # AgeMotherInt <- AgeMotherCes <- rep(Birth$AgeMother,2) # AgeMotherInt[(n+1):(2*n)] <- AgeMotherCes[1:n] <- 0 # # SexInt <- SexCes <- rep(Birth$Sex,2) # SexInt[SexInt==1] <- SexCes[SexCes==1] <- 0 # SexInt[SexInt==2] <- SexCes[SexCes==2] <- 1 # SexInt[(n+1):(2*n)] <- SexCes[1:n] <- 0 # # PrevBase <- rep(Birth$Previous,2) # PreviousInt1 <- PreviousCes1 <- PreviousInt2 <- PreviousCes2 <- rep(0, 2*n) # PreviousInt1[PrevBase==1] <- PreviousCes1[PrevBase==1] <- 1 # PreviousInt2[PrevBase>=2] <- PreviousCes2[PrevBase>=2] <- 1 # PreviousInt1[(n+1):(2*n)] <- PreviousInt2[(n+1):(2*n)] <- PreviousCes1[1:n] <- # PreviousCes2[1:n] <- 0 # # WeightInt <- WeightCes <- rep(Birth$Weight,2) # WeightInt[(n+1):(2*n)] <- WeightCes[1:n] <- 0 ## ----eval=FALSE--------------------------------------------------------------- # GeeDat <- as.data.frame(cbind(ID, InterceptInt, InterceptCes, SexInt , SexCes , # WeightInt , WeightCes , PreviousInt1 , PreviousInt2, PreviousCes1, # PreviousCes2, AgeMotherInt , AgeMotherCes, Response= # c(Birth$Intensive, Birth$Cesarean))) ## ----eval=FALSE--------------------------------------------------------------- # gee1 <- gee (Response ~ -1 + InterceptInt + InterceptCes + WeightInt + WeightCes # + AgeMotherInt + AgeMotherCes + SexInt + SexCes + # PreviousInt1 + PreviousCes1 + PreviousInt2 + PreviousCes2, # family=binomial(link=logit), id=ID, data=GeeDat) # # summary(gee1) ## ----eval=FALSE--------------------------------------------------------------- # coefficients(bivarlogit)[1:2] # coefficients(gee1)[1:2] # # coefficients(bivarlogit)[4:5] # coefficients(gee1)[3:4] # # coefficients(bivarlogit)[7:8] # coefficients(gee1)[5:6] # # coefficients(bivarlogit)[10:11] # coefficients(gee1)[7:8] # # coefficients(bivarlogit)[13:14] # coefficients(gee1)[9:10] # # coefficients(bivarlogit)[16:17] # coefficients(gee1)[11:12] ## ----echo=FALSE,eval=FALSE---------------------------------------------------- # detach(package:VGAM)