## ----echo=FALSE,eval=FALSE---------------------------------------------------- # options(width=85) ## ----results='hide',eval=FALSE------------------------------------------------ # library(catdata) # data(addiction) # attach(addiction) ## ----eval=FALSE--------------------------------------------------------------- # library(nnet) ## ----eval=FALSE--------------------------------------------------------------- # ill <- as.factor(ill) # addiction$ill<-as.factor(addiction$ill) ## ----eval=FALSE--------------------------------------------------------------- # multinom0 <- multinom(ill ~ gender + age + university, data=addiction) # summary(multinom0) ## ----eval=FALSE--------------------------------------------------------------- # library(VGAM) # multivgam0<-vglm(ill ~ gender + age + university, multinomial(refLevel=1), # data=addiction) # summary(multivgam0) ## ----eval=FALSE--------------------------------------------------------------- # addiction$age2 <- addiction$age^2 # multinom1 <- update(multinom0, . ~ . + age2) # summary(multinom1) # # multivgam1<-vglm(ill ~ gender + age + university + age2, multinomial(refLevel=1), # data=addiction) # summary(multivgam1) ## ----eval=FALSE--------------------------------------------------------------- # anova(multinom0,multinom1) # multinom1$dev - multinom0$dev ## ----eval=FALSE--------------------------------------------------------------- # minage <- min(na.omit(age)) # maxage <- max(na.omit(age)) # # ageindex <- seq(minage, maxage, 0.1) # n <- length(ageindex) ## ----eval=FALSE--------------------------------------------------------------- # ageindex2 <- ageindex^2 # # gender1 <- rep(1, n) # gender0 <- rep(0, n) # university1 <- rep(1, n) # # datamale <- as.data.frame(cbind(gender=gender0,age=ageindex,university= # university1,age2=ageindex2)) # datafemale <- as.data.frame(cbind(gender=gender1,age=ageindex,university= # university1,age2=ageindex2)) ## ----eval=FALSE--------------------------------------------------------------- # probsmale <- predict(multinom1, datamale, type="probs") # probsfemale <- predict(multinom1, datafemale, type="probs") ## ----echo=TRUE,eval=FALSE----------------------------------------------------- # par(cex=1.4, lwd=2) # # plot(ageindex, probsmale[,1], type="l", lty=1, ylim=c(0,1), main= # "men with university degree", ylab="probabilities") # lines(ageindex, probsmale[,2], lty="dotted") # lines(ageindex, probsmale[,3], lty="dashed") # legend("topright", legend=c("Weak-willed", "diseased", "both"), lty=c("solid", # "dotted", "dashed")) ## ----echo=TRUE,eval=FALSE----------------------------------------------------- # par(cex=1.4, lwd=2) # # plot(ageindex, probsfemale[,1], type="l", lty=1, ylim=c(0,1), main= # "women with university degree", ylab="probabilities") # lines(ageindex, probsfemale[,2], lty="dotted") # lines(ageindex, probsfemale[,3], lty="dashed") # legend("topright", legend=c("Weak-willed", "diseased", "both"), # lty=c("solid", "dotted", "dashed"))