## ----echo=FALSE,eval=FALSE---------------------------------------------------- # options(width=85) ## ----eval=FALSE--------------------------------------------------------------- # unemployment <- matrix(c(97, 216, 56, 34, 105, 91, 31, 11, # 45, 81, 32, 9, 51, 81, 34, 9), nrow=8, ncol=2) # rownames(unemployment) <- c(paste("male", 1:4), paste("female", 1:4)) # colnames(unemployment) <- c("Short term","Long term") # unemployment ## ----eval=FALSE--------------------------------------------------------------- # y <- c(rep(1, sum(97, 216, 56, 34, 105, 91, 31, 11)), # rep(0, sum(45, 81, 32, 9, 51, 81, 34, 9))) # # G <- c(rep(1, sum(97, 216, 56, 34)), rep(0, sum(105, 91, 31, 11)), # rep(1, sum(45, 81, 32, 9)), rep(0, sum(51, 81, 34, 9))) # # L <- factor(c(rep(1, 97), rep(2, 216), rep(3, 56), rep(4, 34), # rep(1, 105), rep(2, 91), rep(3, 31), rep(4, 11), # rep(1, 45), rep(2, 81), rep(3, 32), rep(4, 9), # rep(1, 51), rep(2, 81), rep(3, 34), rep(4, 9))) # # table(G,L,y) ## ----eval=FALSE--------------------------------------------------------------- # unemp_1 <- glm(y ~ 1,family=binomial) # unemp_G <- glm(y ~ G,family=binomial) # unemp_L <- glm(y ~ L,family=binomial) # unemp_LG <- glm(y ~ G + L,family=binomial) # unemp_sat <- glm(y ~ G * L,family=binomial) # summary(unemp_sat) ## ----eval=FALSE--------------------------------------------------------------- # anova(unemp_LG, unemp_sat) # anova(unemp_L, unemp_LG) # anova(unemp_1, unemp_L) # # anova(unemp_LG, unemp_sat) # anova(unemp_G, unemp_LG) # anova(unemp_1, unemp_G) ## ----eval=FALSE--------------------------------------------------------------- # anova(unemp_1, unemp_sat) # anova(unemp_L, unemp_sat) # anova(unemp_G, unemp_sat) # anova(unemp_LG, unemp_sat) ## ----eval=FALSE--------------------------------------------------------------- # genderleveldat<-data.frame("Long term"=unemployment[,1], # "Short term"=unemployment[,2],"Level"=rep(1:4,2),"Gender"=rep(c(1,0),each=4)) # # groupintercept<-glm(cbind(Long.term, Short.term) ~ 1, family=binomial, # data=genderleveldat) # summary(groupintercept) # # #Corresponding un-grouped model: # summary(unemp_1) # # groupgender<-glm(cbind(Long.term, Short.term) ~ Gender, family=binomial, # data=genderleveldat) # summary(groupgender) # # #Corresponding un-grouped model: # summary(unemp_G) # # # grouplevel<-glm(cbind(Long.term, Short.term) ~ as.factor(Level), family=binomial, # data=genderleveldat) # summary(grouplevel) # # #Corresponding un-grouped model: # summary(unemp_L) # # # groupgenderlevel<-glm(cbind(Long.term, Short.term) ~ as.factor(Gender) + # as.factor(Level), family=binomial, data=genderleveldat) # summary(groupgenderlevel) # # #Corresponding un-grouped model: # summary(unemp_LG) # # groupsat<-glm(cbind(Long.term, Short.term) ~ as.factor(Gender) * as.factor(Level), # family=binomial, data=genderleveldat) # summary(groupsat) # # #Corresponding un-grouped model: # summary(unemp_sat) ## ----eval=FALSE--------------------------------------------------------------- # anova(groupgenderlevel, groupsat) # anova(grouplevel, groupgenderlevel) # anova(groupintercept, grouplevel) # # # anova(groupgenderlevel, groupsat) # anova(groupgender, groupgenderlevel) # anova(groupintercept, groupgender) ## ----echo=FALSE,results='hide',eval=FALSE------------------------------------- # rm(unemployment)