## ----echo=FALSE,eval=FALSE---------------------------------------------------- # options(width=60) ## ----results='hide',eval=FALSE------------------------------------------------ # library(catdata) # data(unemployment) # attach(unemployment) ## ----eval=FALSE--------------------------------------------------------------- # durbin <- as.factor(durbin) # table.durbin <- ftable(subset(unemployment, select=c("age", "durbin")), # col.vars="durbin") # rels<-table.durbin[,1]/rowSums(table.durbin) # age.new <- min(age):max(age) # # model1 <- glm(table.durbin ~ age.new, family=binomial) # summary(model1) ## ----eval=FALSE--------------------------------------------------------------- # plot(age.new, model1$fitted.values, xlab="Age", ylab="Observed/Fitted values", # type="l", ylim=c(0,1)) # points(age.new,table.durbin[,1]/rowSums(table.durbin)) ## ----eval=FALSE--------------------------------------------------------------- # plot(model1$fitted.values,sqrt(rowSums(table.durbin))*rstandard(model1), # xlab="Predicted values", ylab="Residuals") ## ----eval=FALSE--------------------------------------------------------------- # qqnorm(sqrt(rowSums(table.durbin))*rstandard(model1), main="", # ylab="Standardized deviance residuals") # qqline(sqrt(rowSums(table.durbin))*rstandard(model1), lwd=2.5, # lty="dashed", col="red")